autonomy phase 2

This commit is contained in:
serversdwn
2025-12-14 14:43:08 -05:00
parent 49f792f20c
commit 193bf814ec
12 changed files with 2258 additions and 4 deletions

View File

@@ -0,0 +1 @@
"""Pattern learning and adaptation system."""

View File

@@ -0,0 +1,383 @@
"""
Pattern Learning System - learns from interaction patterns to improve autonomy.
"""
import logging
import json
import os
from typing import Dict, List, Any, Optional
from datetime import datetime
from collections import defaultdict
logger = logging.getLogger(__name__)
class PatternLearner:
"""
Learns from interaction patterns to improve Lyra's autonomous behavior.
Tracks:
- Topic frequencies (what users talk about)
- Time-of-day patterns (when users interact)
- User preferences (how users like responses)
- Successful response strategies (what works well)
"""
def __init__(self, patterns_file: str = "/app/data/learned_patterns.json"):
"""
Initialize pattern learner.
Args:
patterns_file: Path to persistent patterns storage
"""
self.patterns_file = patterns_file
self.patterns = self._load_patterns()
def _load_patterns(self) -> Dict[str, Any]:
"""Load patterns from disk."""
if os.path.exists(self.patterns_file):
try:
with open(self.patterns_file, 'r') as f:
patterns = json.load(f)
logger.info(f"[PATTERN_LEARNER] Loaded patterns from {self.patterns_file}")
return patterns
except Exception as e:
logger.error(f"[PATTERN_LEARNER] Failed to load patterns: {e}")
# Initialize empty patterns
return {
"topic_frequencies": {},
"time_patterns": {},
"user_preferences": {},
"successful_strategies": {},
"interaction_count": 0,
"last_updated": datetime.utcnow().isoformat()
}
def _save_patterns(self) -> None:
"""Save patterns to disk."""
try:
# Ensure directory exists
os.makedirs(os.path.dirname(self.patterns_file), exist_ok=True)
self.patterns["last_updated"] = datetime.utcnow().isoformat()
with open(self.patterns_file, 'w') as f:
json.dump(self.patterns, f, indent=2)
logger.debug(f"[PATTERN_LEARNER] Saved patterns to {self.patterns_file}")
except Exception as e:
logger.error(f"[PATTERN_LEARNER] Failed to save patterns: {e}")
async def learn_from_interaction(
self,
user_prompt: str,
response: str,
monologue: Dict[str, Any],
context: Dict[str, Any]
) -> None:
"""
Learn from a single interaction.
Args:
user_prompt: User's message
response: Lyra's response
monologue: Inner monologue analysis
context: Full context state
"""
self.patterns["interaction_count"] += 1
# Learn topic frequencies
self._learn_topics(user_prompt, monologue)
# Learn time patterns
self._learn_time_patterns()
# Learn user preferences
self._learn_preferences(monologue, context)
# Learn successful strategies
self._learn_strategies(monologue, response, context)
# Save periodically (every 10 interactions)
if self.patterns["interaction_count"] % 10 == 0:
self._save_patterns()
def _learn_topics(self, user_prompt: str, monologue: Dict[str, Any]) -> None:
"""Track topic frequencies."""
intent = monologue.get("intent", "unknown")
# Increment topic counter
topic_freq = self.patterns["topic_frequencies"]
topic_freq[intent] = topic_freq.get(intent, 0) + 1
# Extract keywords (simple approach - words > 5 chars)
keywords = [word.lower() for word in user_prompt.split() if len(word) > 5]
for keyword in keywords:
topic_freq[f"keyword:{keyword}"] = topic_freq.get(f"keyword:{keyword}", 0) + 1
logger.debug(f"[PATTERN_LEARNER] Topic learned: {intent}")
def _learn_time_patterns(self) -> None:
"""Track time-of-day patterns."""
now = datetime.utcnow()
hour = now.hour
# Track interactions by hour
time_patterns = self.patterns["time_patterns"]
hour_key = f"hour_{hour:02d}"
time_patterns[hour_key] = time_patterns.get(hour_key, 0) + 1
# Track day of week
day_key = f"day_{now.strftime('%A').lower()}"
time_patterns[day_key] = time_patterns.get(day_key, 0) + 1
def _learn_preferences(self, monologue: Dict[str, Any], context: Dict[str, Any]) -> None:
"""Learn user preferences from detected tone and depth."""
tone = monologue.get("tone", "neutral")
depth = monologue.get("depth", "medium")
prefs = self.patterns["user_preferences"]
# Track preferred tone
prefs.setdefault("tone_counts", {})
prefs["tone_counts"][tone] = prefs["tone_counts"].get(tone, 0) + 1
# Track preferred depth
prefs.setdefault("depth_counts", {})
prefs["depth_counts"][depth] = prefs["depth_counts"].get(depth, 0) + 1
def _learn_strategies(
self,
monologue: Dict[str, Any],
response: str,
context: Dict[str, Any]
) -> None:
"""
Learn which response strategies are successful.
Success indicators:
- Executive was consulted and plan generated
- Response length matches depth request
- Tone matches request
"""
intent = monologue.get("intent", "unknown")
executive_used = context.get("executive_plan") is not None
strategies = self.patterns["successful_strategies"]
strategies.setdefault(intent, {})
# Track executive usage for this intent
if executive_used:
key = f"{intent}:executive_used"
strategies.setdefault(key, 0)
strategies[key] += 1
# Track response length patterns
response_length = len(response.split())
depth = monologue.get("depth", "medium")
length_key = f"{depth}:avg_words"
if length_key not in strategies:
strategies[length_key] = response_length
else:
# Running average
strategies[length_key] = (strategies[length_key] + response_length) / 2
# ========================================
# Pattern Analysis and Recommendations
# ========================================
def get_top_topics(self, limit: int = 10) -> List[tuple]:
"""
Get most frequent topics.
Args:
limit: Max number of topics to return
Returns:
List of (topic, count) tuples, sorted by count
"""
topics = self.patterns["topic_frequencies"]
sorted_topics = sorted(topics.items(), key=lambda x: x[1], reverse=True)
return sorted_topics[:limit]
def get_preferred_tone(self) -> str:
"""
Get user's most preferred tone.
Returns:
Preferred tone string
"""
prefs = self.patterns["user_preferences"]
tone_counts = prefs.get("tone_counts", {})
if not tone_counts:
return "neutral"
return max(tone_counts.items(), key=lambda x: x[1])[0]
def get_preferred_depth(self) -> str:
"""
Get user's most preferred response depth.
Returns:
Preferred depth string
"""
prefs = self.patterns["user_preferences"]
depth_counts = prefs.get("depth_counts", {})
if not depth_counts:
return "medium"
return max(depth_counts.items(), key=lambda x: x[1])[0]
def get_peak_hours(self, limit: int = 3) -> List[int]:
"""
Get peak interaction hours.
Args:
limit: Number of top hours to return
Returns:
List of hours (0-23)
"""
time_patterns = self.patterns["time_patterns"]
hour_counts = {k: v for k, v in time_patterns.items() if k.startswith("hour_")}
if not hour_counts:
return []
sorted_hours = sorted(hour_counts.items(), key=lambda x: x[1], reverse=True)
top_hours = sorted_hours[:limit]
# Extract hour numbers
return [int(h[0].split("_")[1]) for h in top_hours]
def should_use_executive(self, intent: str) -> bool:
"""
Recommend whether to use executive for given intent based on patterns.
Args:
intent: Intent type
Returns:
True if executive is recommended
"""
strategies = self.patterns["successful_strategies"]
key = f"{intent}:executive_used"
# If we've used executive for this intent >= 3 times, recommend it
return strategies.get(key, 0) >= 3
def get_recommended_response_length(self, depth: str) -> int:
"""
Get recommended response length in words for given depth.
Args:
depth: Depth level (short/medium/deep)
Returns:
Recommended word count
"""
strategies = self.patterns["successful_strategies"]
key = f"{depth}:avg_words"
avg_length = strategies.get(key, None)
if avg_length:
return int(avg_length)
# Defaults if no pattern learned
defaults = {
"short": 50,
"medium": 150,
"deep": 300
}
return defaults.get(depth, 150)
def get_insights(self) -> Dict[str, Any]:
"""
Get high-level insights from learned patterns.
Returns:
{
"total_interactions": int,
"top_topics": [(topic, count), ...],
"preferred_tone": str,
"preferred_depth": str,
"peak_hours": [hours],
"learning_recommendations": [str]
}
"""
recommendations = []
# Check if user consistently prefers certain settings
preferred_tone = self.get_preferred_tone()
preferred_depth = self.get_preferred_depth()
if preferred_tone != "neutral":
recommendations.append(f"User prefers {preferred_tone} tone")
if preferred_depth != "medium":
recommendations.append(f"User prefers {preferred_depth} depth responses")
# Check for recurring topics
top_topics = self.get_top_topics(limit=3)
if top_topics:
top_topic = top_topics[0][0]
recommendations.append(f"Consider adding '{top_topic}' to learning queue")
return {
"total_interactions": self.patterns["interaction_count"],
"top_topics": self.get_top_topics(limit=5),
"preferred_tone": preferred_tone,
"preferred_depth": preferred_depth,
"peak_hours": self.get_peak_hours(limit=3),
"learning_recommendations": recommendations
}
def reset_patterns(self) -> None:
"""Reset all learned patterns (use with caution)."""
self.patterns = {
"topic_frequencies": {},
"time_patterns": {},
"user_preferences": {},
"successful_strategies": {},
"interaction_count": 0,
"last_updated": datetime.utcnow().isoformat()
}
self._save_patterns()
logger.warning("[PATTERN_LEARNER] Patterns reset")
def export_patterns(self) -> Dict[str, Any]:
"""
Export all patterns for analysis.
Returns:
Complete patterns dict
"""
return self.patterns.copy()
# Singleton instance
_learner_instance = None
def get_pattern_learner(patterns_file: str = "/app/data/learned_patterns.json") -> PatternLearner:
"""
Get singleton pattern learner instance.
Args:
patterns_file: Path to patterns file (only used on first call)
Returns:
PatternLearner instance
"""
global _learner_instance
if _learner_instance is None:
_learner_instance = PatternLearner(patterns_file=patterns_file)
return _learner_instance