feat: Implement Trillium notes executor for searching and creating notes via ETAPI

- Added `trillium.py` for searching and creating notes with Trillium's ETAPI.
- Implemented `search_notes` and `create_note` functions with appropriate error handling and validation.

feat: Add web search functionality using DuckDuckGo

- Introduced `web_search.py` for performing web searches without API keys.
- Implemented `search_web` function with result handling and validation.

feat: Create provider-agnostic function caller for iterative tool calling

- Developed `function_caller.py` to manage LLM interactions with tools.
- Implemented iterative calling logic with error handling and tool execution.

feat: Establish a tool registry for managing available tools

- Created `registry.py` to define and manage tool availability and execution.
- Integrated feature flags for enabling/disabling tools based on environment variables.

feat: Implement event streaming for tool calling processes

- Added `stream_events.py` to manage Server-Sent Events (SSE) for tool calling.
- Enabled real-time updates during tool execution for enhanced user experience.

test: Add tests for tool calling system components

- Created `test_tools.py` to validate functionality of code execution, web search, and tool registry.
- Implemented asynchronous tests to ensure proper execution and result handling.

chore: Add Dockerfile for sandbox environment setup

- Created `Dockerfile` to set up a Python environment with necessary dependencies for code execution.

chore: Add debug regex script for testing XML parsing

- Introduced `debug_regex.py` to validate regex patterns against XML tool calls.

chore: Add HTML template for displaying thinking stream events

- Created `test_thinking_stream.html` for visualizing tool calling events in a user-friendly format.

test: Add tests for OllamaAdapter XML parsing

- Developed `test_ollama_parser.py` to validate XML parsing with various test cases, including malformed XML.
This commit is contained in:
serversdwn
2025-12-26 03:49:20 -05:00
parent f1471cde84
commit 64429b19e6
37 changed files with 3238 additions and 23 deletions

View File

@@ -0,0 +1,235 @@
"""
Provider-agnostic function caller with iterative tool calling loop.
This module implements the iterative loop that allows LLMs to call tools
multiple times until they have the information they need to answer the user.
"""
import os
import logging
from typing import Dict, List, Optional
from llm.llm_router import call_llm, TOOL_ADAPTERS, BACKENDS
from .registry import get_registry
from .stream_events import get_stream_manager
logger = logging.getLogger(__name__)
class FunctionCaller:
"""Provider-agnostic iterative tool calling loop.
This class orchestrates the back-and-forth between the LLM and tools:
1. Call LLM with tools available
2. If LLM requests tool calls, execute them
3. Add results to conversation
4. Repeat until LLM is done or max iterations reached
"""
def __init__(self, backend: str, temperature: float = 0.7):
"""Initialize function caller.
Args:
backend: LLM backend to use ("OPENAI", "OLLAMA", etc.)
temperature: Temperature for LLM calls
"""
self.backend = backend
self.temperature = temperature
self.registry = get_registry()
self.max_iterations = int(os.getenv("MAX_TOOL_ITERATIONS", "5"))
# Resolve adapter for this backend
self.adapter = self._get_adapter()
def _get_adapter(self):
"""Get the appropriate adapter for this backend."""
adapter = TOOL_ADAPTERS.get(self.backend)
# For PRIMARY/SECONDARY/FALLBACK, determine adapter based on provider
if adapter is None and self.backend in ["PRIMARY", "SECONDARY", "FALLBACK"]:
cfg = BACKENDS.get(self.backend, {})
provider = cfg.get("provider", "").lower()
if provider == "openai":
adapter = TOOL_ADAPTERS["OPENAI"]
elif provider == "ollama":
adapter = TOOL_ADAPTERS["OLLAMA"]
elif provider == "mi50":
adapter = TOOL_ADAPTERS["MI50"]
return adapter
async def call_with_tools(
self,
messages: List[Dict],
max_tokens: int = 2048,
session_id: Optional[str] = None
) -> Dict:
"""Execute LLM with iterative tool calling.
Args:
messages: Conversation history
max_tokens: Maximum tokens for LLM response
session_id: Optional session ID for streaming events
Returns:
dict: {
"content": str, # Final response
"iterations": int, # Number of iterations
"tool_calls": list, # All tool calls made
"messages": list, # Full conversation history
"truncated": bool (optional) # True if max iterations reached
}
"""
logger.info(f"🔍 FunctionCaller.call_with_tools() invoked with {len(messages)} messages")
tools = self.registry.get_tool_definitions()
logger.info(f"🔍 Got {len(tools or [])} tool definitions from registry")
# Get stream manager for emitting events
stream_manager = get_stream_manager()
should_stream = session_id and stream_manager.has_subscribers(session_id)
# If no tools are enabled, just call LLM directly
if not tools:
logger.warning("FunctionCaller invoked but no tools are enabled")
response = await call_llm(
messages=messages,
backend=self.backend,
temperature=self.temperature,
max_tokens=max_tokens
)
return {
"content": response,
"iterations": 1,
"tool_calls": [],
"messages": messages + [{"role": "assistant", "content": response}]
}
conversation = messages.copy()
all_tool_calls = []
for iteration in range(self.max_iterations):
logger.info(f"Tool calling iteration {iteration + 1}/{self.max_iterations}")
# Emit thinking event
if should_stream:
await stream_manager.emit(session_id, "thinking", {
"message": f"🤔 Thinking... (iteration {iteration + 1}/{self.max_iterations})"
})
# Call LLM with tools
try:
response = await call_llm(
messages=conversation,
backend=self.backend,
temperature=self.temperature,
max_tokens=max_tokens,
tools=tools,
tool_choice="auto",
return_adapter_response=True
)
except Exception as e:
logger.error(f"LLM call failed: {str(e)}")
if should_stream:
await stream_manager.emit(session_id, "error", {
"message": f"❌ Error: {str(e)}"
})
return {
"content": f"Error calling LLM: {str(e)}",
"iterations": iteration + 1,
"tool_calls": all_tool_calls,
"messages": conversation,
"error": True
}
# Add assistant message to conversation
if response.get("content"):
conversation.append({
"role": "assistant",
"content": response["content"]
})
# Check for tool calls
tool_calls = response.get("tool_calls")
logger.debug(f"Response from LLM: content_length={len(response.get('content', ''))}, tool_calls={tool_calls}")
if not tool_calls:
# No more tool calls - LLM is done
logger.info(f"Tool calling complete after {iteration + 1} iterations")
if should_stream:
await stream_manager.emit(session_id, "done", {
"message": "✅ Complete!",
"final_answer": response["content"]
})
return {
"content": response["content"],
"iterations": iteration + 1,
"tool_calls": all_tool_calls,
"messages": conversation
}
# Execute each tool call
logger.info(f"Executing {len(tool_calls)} tool call(s)")
for tool_call in tool_calls:
all_tool_calls.append(tool_call)
tool_name = tool_call.get("name")
tool_args = tool_call.get("arguments", {})
tool_id = tool_call.get("id", "unknown")
logger.info(f"Calling tool: {tool_name} with args: {tool_args}")
# Emit tool call event
if should_stream:
await stream_manager.emit(session_id, "tool_call", {
"tool": tool_name,
"args": tool_args,
"message": f"🔧 Using tool: {tool_name}"
})
try:
# Execute tool
result = await self.registry.execute_tool(tool_name, tool_args)
logger.info(f"Tool {tool_name} executed successfully")
# Emit tool result event
if should_stream:
# Format result preview
result_preview = str(result)
if len(result_preview) > 200:
result_preview = result_preview[:200] + "..."
await stream_manager.emit(session_id, "tool_result", {
"tool": tool_name,
"result": result,
"message": f"📊 Result: {result_preview}"
})
except Exception as e:
logger.error(f"Tool {tool_name} execution failed: {str(e)}")
result = {"error": f"Tool execution failed: {str(e)}"}
# Format result using adapter
if not self.adapter:
logger.warning(f"No adapter available for backend {self.backend}, using fallback format")
result_msg = {
"role": "user",
"content": f"Tool {tool_name} result: {result}"
}
else:
result_msg = self.adapter.format_tool_result(
tool_id,
tool_name,
result
)
conversation.append(result_msg)
# Max iterations reached without completion
logger.warning(f"Tool calling truncated after {self.max_iterations} iterations")
return {
"content": response.get("content", ""),
"iterations": self.max_iterations,
"tool_calls": all_tool_calls,
"messages": conversation,
"truncated": True
}