Initial clean commit - unified Lyra stack
This commit is contained in:
49
rag/chatlogs/lyra/0103_Mem0_seeding_part_3.json
Normal file
49
rag/chatlogs/lyra/0103_Mem0_seeding_part_3.json
Normal file
@@ -0,0 +1,49 @@
|
||||
{
|
||||
"title": "Mem0 seeding part 3",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Mem0 seeding part 3 Activate! YOu ready to do some werk"
|
||||
},
|
||||
{
|
||||
"role": "tool",
|
||||
"content": "All the files uploaded by the user have been fully loaded. Searching won't provide additional information."
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Heck yeah — *Mem0 Seeding Part 3: Online.* 🧠💾 \nWe’re synced up to the latest stack:\n\n- **Mem0 v0.4.0** — Hugging Face TEI on 3090 ✅ \n- **Core v0.3.1 / Cortex v0.3.0** — Stable and routing cleanly ✅ \n- Dual-mode `.env` switch between OpenAI and local ✅ \n- CSV export pipeline working ✅ \n\nBefore we start blasting data into Postgres again, let’s just confirm one thing so we don’t waste time:\n\n**Step 1 — Environment sanity check**\nRun this in your `~/lyra-mem0` folder and paste the output here:\n```bash\ndocker compose -f docker-compose.mem0.yml ps\n```\nWe’re looking for:\n```\nmem0-api-server ... Up (healthy)\nmem0-postgres ... Up (healthy)\nmem0-qdrant ... Up (healthy)\nmem0-neo4j ... Up (healthy)\n```\n\nOnce you show me that, we’ll move to **Step 2: verify embeddings provider** (OpenAI vs HF TEI) before starting the actual seeding batch."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "all healthy"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Perfect — clean slate, all systems green. 🟢 \n\nLet’s roll into the next piece:\n\n---\n\n### **Step 2 — Verify Embeddings Provider**\nWe just want to be 100 % sure that Mem0 is actually pointing to the Hugging Face TEI embedder on the 3090 before you start inserting.\n\nRun this inside `~/lyra-mem0`:\n\n```bash\ndocker exec -it mem0-api-server env | grep EMBEDDER\n```\n\nYou should see something like:\n```\nEMBEDDER_PROVIDER=huggingface\nEMBEDDER_MODEL=gte-Qwen2-1.5B-instruct\nEMBEDDER_API_URL=http://10.0.0.3:8080\n```\n\n---\n\n✅ **If you see those (or similar)** → we’ll move straight to Step 3 (sanity-check a test embedding). \n⚠️ **If not** → we’ll switch to the correct `.env.3090` profile first.\n\nGo ahead and paste the output here."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "so we swapped it to do embedding on OpenAI and the main LLM as qwen"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Perfect — that’s a totally fine setup for seeding. \nSo your current flow is: \n\n🧠 **Embeddings:** OpenAI (`text-embedding-3-small`, 1536-dim) \n🗣️ **Main LLM:** Qwen (running locally via Ollama or Cortex/Relay) \n\nThat’ll guarantee all the vectors land with the right shape for Postgres/Neo4j, no dimension mismatch headaches.\n\n---\n\n### ✅ Step 3 — Quick sanity test\n\nLet’s just confirm Mem0’s still embedding cleanly through OpenAI. \nRun this:\n\n```bash\ncurl -X POST http://localhost:7077/memories \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"brian\",\n \"messages\": [\n {\"role\":\"user\",\"content\":\"Testing OpenAI embeddings from Mem0 part 3\"}\n ]\n }'\n```\n\nIf it replies with something like:\n```json\n{\n \"results\": [{\"id\":\"...\",\"memory\":\"Testing OpenAI embeddings from Mem0 part 3\"}]\n}\n```\nthen we’re golden.\n\nOnce you confirm that response, we’ll start **Step 4: prepping the seeding batch** (loading your Cloud Lyra export into the Mem0 seeder)."
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Ollama is running on my main rig with the 3090"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Excellent — that gives you plenty of horsepower for the local Qwen model. \n\nLet’s lock down what you have before we push data: \n\n- 🧩 **LLM (Reasoning):** Qwen — served by **Ollama** on your 3090. \n- 🧠 **Embeddings (Vectorizer):** **OpenAI**, 1536-dim → stored in Mem0 → Postgres/Qdrant. \n- 🧾 **Mem0 Stack:** All containers healthy. \n- 🎯 **Goal:** Seed memories from your Cloud Lyra export into this local Mem0 instance. \n\nPerfect combo: it keeps inference local and fast while embedding stays schema-compatible. \n\n---\n\n### Step 4 — Confirm connectivity between Mem0 ↔ Ollama\nEven though Mem0 isn’t using Ollama for embeddings right now, let’s just make sure the Relay or any local LLM calls can actually hit the 3090 service.\n\nFrom the machine running Mem0/Core, run:\n\n```bash\ncurl http://10.0.0.3:11434/api/tags\n```\n\n✅ **Expected:** a short JSON list of models (e.g., `[\"qwen2\", \"mistral\", ...]`) \n❌ **If connection refused:** we’ll check firewall / IP binding.\n\nOnce we confirm that endpoint responds, we’ll jump into **Step 5 — load your seeding file and run the insert script.**"
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "good to go"
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": "Nice — you’re dialed in. 🧠🔥 \n\nAlright, let’s move to the **fun part**: getting those memories seeded.\n\n---\n\n### **Step 5 — Prepare your seeding batch**\n\nYou already have your Cloud Lyra export, right? \nIf so, make sure it’s in JSON format — something like this:\n\n```json\n{\n \"results\": [\n {\n \"user_id\": \"brian\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Example memory one\"},\n {\"role\": \"assistant\", \"content\": \"Acknowledged.\"}\n ]\n },\n {\n \"user_id\": \"brian\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Example memory two\"}\n ]\n }\n ]\n}\n```\n\n✅ **Goal:** one top-level `results` array containing objects with `user_id` and `messages`.\n\nPlace that file in your working folder — for example:\n```\n~/lyra-mem0/seeding/cloud_export.json\n```\n\n---\n\nWhen that’s in place, we’ll go to **Step 6 — run the seeder script** to push everything into Mem0. \nWant me to show you the exact Python command for the import next?"
|
||||
}
|
||||
]
|
||||
}
|
||||
Reference in New Issue
Block a user