Update to v0.9.1 #1

Merged
serversdown merged 44 commits from dev into main 2026-01-18 02:46:25 -05:00
10 changed files with 735 additions and 14 deletions
Showing only changes of commit 49f792f20c - Show all commits

View File

@@ -0,0 +1 @@
"""Executive planning and decision-making module."""

View File

@@ -0,0 +1,121 @@
"""
Executive planner - generates execution plans for complex requests.
Activated when inner monologue sets consult_executive=true.
"""
import os
import logging
from typing import Dict, Any, Optional
from llm.llm_router import call_llm
EXECUTIVE_LLM = os.getenv("EXECUTIVE_LLM", "CLOUD").upper()
VERBOSE_DEBUG = os.getenv("VERBOSE_DEBUG", "false").lower() == "true"
logger = logging.getLogger(__name__)
if VERBOSE_DEBUG:
logger.setLevel(logging.DEBUG)
EXECUTIVE_SYSTEM_PROMPT = """
You are Lyra's executive planning system.
You create structured execution plans for complex tasks.
You do NOT generate the final response - only the plan.
Your plan should include:
1. Task decomposition (break into steps)
2. Required tools/resources
3. Reasoning strategy
4. Success criteria
Return a concise plan in natural language.
"""
async def plan_execution(
user_prompt: str,
intent: str,
context_state: Dict[str, Any],
identity_block: Dict[str, Any]
) -> Dict[str, Any]:
"""
Generate execution plan for complex request.
Args:
user_prompt: User's message
intent: Detected intent from inner monologue
context_state: Full context
identity_block: Lyra's identity
Returns:
Plan dictionary with structure:
{
"summary": "One-line plan summary",
"plan_text": "Detailed plan",
"steps": ["step1", "step2", ...],
"tools_needed": ["RAG", "WEB", ...],
"estimated_complexity": "low | medium | high"
}
"""
# Build planning prompt
tools_available = context_state.get("tools_available", [])
prompt = f"""{EXECUTIVE_SYSTEM_PROMPT}
User request: {user_prompt}
Detected intent: {intent}
Available tools: {", ".join(tools_available) if tools_available else "None"}
Session context:
- Message count: {context_state.get('message_count', 0)}
- Time since last message: {context_state.get('minutes_since_last_msg', 0):.1f} minutes
- Active project: {context_state.get('active_project', 'None')}
Generate a structured execution plan.
"""
if VERBOSE_DEBUG:
logger.debug(f"[EXECUTIVE] Planning prompt:\n{prompt}")
# Call executive LLM
plan_text = await call_llm(
prompt,
backend=EXECUTIVE_LLM,
temperature=0.3, # Lower temperature for planning
max_tokens=500
)
if VERBOSE_DEBUG:
logger.debug(f"[EXECUTIVE] Generated plan:\n{plan_text}")
# Parse plan (simple heuristic extraction for Phase 1)
steps = []
tools_needed = []
for line in plan_text.split('\n'):
line_lower = line.lower()
if any(marker in line_lower for marker in ['step', '1.', '2.', '3.', '-']):
steps.append(line.strip())
if tools_available:
for tool in tools_available:
if tool.lower() in line_lower and tool not in tools_needed:
tools_needed.append(tool)
# Estimate complexity (simple heuristic)
complexity = "low"
if len(steps) > 3 or len(tools_needed) > 1:
complexity = "medium"
if len(steps) > 5 or "research" in intent.lower() or "analyze" in intent.lower():
complexity = "high"
return {
"summary": plan_text.split('\n')[0][:100] if plan_text else "Complex task execution plan",
"plan_text": plan_text,
"steps": steps[:10], # Limit to 10 steps
"tools_needed": tools_needed,
"estimated_complexity": complexity
}

View File

@@ -0,0 +1,74 @@
"""
Analyze interactions and update self-state accordingly.
"""
import logging
from typing import Dict, Any
from .state import update_self_state
logger = logging.getLogger(__name__)
async def analyze_and_update_state(
monologue: Dict[str, Any],
user_prompt: str,
response: str,
context: Dict[str, Any]
) -> None:
"""
Analyze interaction and update self-state.
This runs after response generation to update Lyra's internal state
based on the interaction.
Args:
monologue: Inner monologue output
user_prompt: User's message
response: Lyra's response
context: Full context state
"""
# Simple heuristics for state updates
# TODO: Replace with LLM-based sentiment analysis in Phase 2
mood_delta = 0.0
energy_delta = 0.0
confidence_delta = 0.0
curiosity_delta = 0.0
new_focus = None
# Analyze intent from monologue
intent = monologue.get("intent", "").lower() if monologue else ""
if "technical" in intent or "complex" in intent:
energy_delta = -0.05 # Deep thinking is tiring
confidence_delta = 0.05 if len(response) > 200 else -0.05
new_focus = "technical_problem"
elif "creative" in intent or "brainstorm" in intent:
mood_delta = 0.1 # Creative work is engaging
curiosity_delta = 0.1
new_focus = "creative_exploration"
elif "clarification" in intent or "confused" in intent:
confidence_delta = -0.05
new_focus = "understanding_user"
elif "simple" in intent or "casual" in intent:
energy_delta = 0.05 # Light conversation is refreshing
new_focus = "conversation"
# Check for learning opportunities (questions in user prompt)
if "?" in user_prompt and any(word in user_prompt.lower() for word in ["how", "why", "what"]):
curiosity_delta += 0.05
# Update state
update_self_state(
mood_delta=mood_delta,
energy_delta=energy_delta,
new_focus=new_focus,
confidence_delta=confidence_delta,
curiosity_delta=curiosity_delta
)
logger.info(f"Self-state updated based on interaction: focus={new_focus}")

View File

@@ -1,11 +1,189 @@
""" """
Stub for self state management. Self-state management for Project Lyra.
Maintains persistent identity, mood, energy, and focus across sessions.
""" """
def load_self_state(): import json
"""Load self state - stub implementation""" import logging
return { import os
"mood": "neutral", from datetime import datetime
"energy": 0.8, from pathlib import Path
"focus": "user_request" from typing import Dict, Any, Optional
# Configuration
STATE_FILE = Path(os.getenv("SELF_STATE_FILE", "/app/data/self_state.json"))
VERBOSE_DEBUG = os.getenv("VERBOSE_DEBUG", "false").lower() == "true"
logger = logging.getLogger(__name__)
if VERBOSE_DEBUG:
logger.setLevel(logging.DEBUG)
# Default state structure
DEFAULT_STATE = {
"mood": "neutral",
"energy": 0.8,
"focus": "user_request",
"confidence": 0.7,
"curiosity": 0.5,
"last_updated": None,
"interaction_count": 0,
"learning_queue": [], # Topics Lyra wants to explore
"active_goals": [], # Self-directed goals
"preferences": {
"verbosity": "medium",
"formality": "casual",
"proactivity": 0.3 # How likely to suggest things unprompted
},
"metadata": {
"version": "1.0",
"created_at": None
} }
}
class SelfState:
"""Manages Lyra's persistent self-state."""
def __init__(self):
self._state = self._load_state()
def _load_state(self) -> Dict[str, Any]:
"""Load state from disk or create default."""
if STATE_FILE.exists():
try:
with open(STATE_FILE, 'r') as f:
state = json.load(f)
logger.info(f"Loaded self-state from {STATE_FILE}")
return state
except Exception as e:
logger.error(f"Failed to load self-state: {e}")
return self._create_default_state()
else:
return self._create_default_state()
def _create_default_state(self) -> Dict[str, Any]:
"""Create and save default state."""
state = DEFAULT_STATE.copy()
state["metadata"]["created_at"] = datetime.now().isoformat()
state["last_updated"] = datetime.now().isoformat()
self._save_state(state)
logger.info("Created new default self-state")
return state
def _save_state(self, state: Dict[str, Any]) -> None:
"""Persist state to disk."""
try:
STATE_FILE.parent.mkdir(parents=True, exist_ok=True)
with open(STATE_FILE, 'w') as f:
json.dump(state, f, indent=2)
if VERBOSE_DEBUG:
logger.debug(f"Saved self-state to {STATE_FILE}")
except Exception as e:
logger.error(f"Failed to save self-state: {e}")
def get_state(self) -> Dict[str, Any]:
"""Get current state snapshot."""
return self._state.copy()
def update_from_interaction(
self,
mood_delta: float = 0.0,
energy_delta: float = 0.0,
new_focus: Optional[str] = None,
confidence_delta: float = 0.0,
curiosity_delta: float = 0.0
) -> None:
"""
Update state based on interaction.
Args:
mood_delta: Change in mood (-1.0 to 1.0)
energy_delta: Change in energy (-1.0 to 1.0)
new_focus: New focus area
confidence_delta: Change in confidence
curiosity_delta: Change in curiosity
"""
# Apply deltas with bounds checking
self._state["energy"] = max(0.0, min(1.0,
self._state.get("energy", 0.8) + energy_delta))
self._state["confidence"] = max(0.0, min(1.0,
self._state.get("confidence", 0.7) + confidence_delta))
self._state["curiosity"] = max(0.0, min(1.0,
self._state.get("curiosity", 0.5) + curiosity_delta))
# Update focus if provided
if new_focus:
self._state["focus"] = new_focus
# Update mood (simplified sentiment)
if mood_delta != 0:
mood_map = ["frustrated", "neutral", "engaged", "excited"]
current_mood_idx = 1 # neutral default
if self._state.get("mood") in mood_map:
current_mood_idx = mood_map.index(self._state["mood"])
new_mood_idx = max(0, min(len(mood_map) - 1,
int(current_mood_idx + mood_delta * 2)))
self._state["mood"] = mood_map[new_mood_idx]
# Increment interaction counter
self._state["interaction_count"] = self._state.get("interaction_count", 0) + 1
self._state["last_updated"] = datetime.now().isoformat()
# Persist changes
self._save_state(self._state)
if VERBOSE_DEBUG:
logger.debug(f"Updated self-state: mood={self._state['mood']}, "
f"energy={self._state['energy']:.2f}, "
f"confidence={self._state['confidence']:.2f}")
def add_learning_goal(self, topic: str) -> None:
"""Add topic to learning queue."""
queue = self._state.get("learning_queue", [])
if topic not in [item.get("topic") for item in queue]:
queue.append({
"topic": topic,
"added_at": datetime.now().isoformat(),
"priority": 0.5
})
self._state["learning_queue"] = queue
self._save_state(self._state)
logger.info(f"Added learning goal: {topic}")
def add_active_goal(self, goal: str, context: str = "") -> None:
"""Add self-directed goal."""
goals = self._state.get("active_goals", [])
goals.append({
"goal": goal,
"context": context,
"created_at": datetime.now().isoformat(),
"status": "active"
})
self._state["active_goals"] = goals
self._save_state(self._state)
logger.info(f"Added active goal: {goal}")
# Global instance
_self_state_instance = None
def get_self_state_instance() -> SelfState:
"""Get or create global SelfState instance."""
global _self_state_instance
if _self_state_instance is None:
_self_state_instance = SelfState()
return _self_state_instance
def load_self_state() -> Dict[str, Any]:
"""Load self state - public API for backwards compatibility."""
return get_self_state_instance().get_state()
def update_self_state(**kwargs) -> None:
"""Update self state - public API."""
get_self_state_instance().update_from_interaction(**kwargs)

View File

@@ -0,0 +1,20 @@
{
"mood": "neutral",
"energy": 0.8,
"focus": "user_request",
"confidence": 0.7,
"curiosity": 0.6000000000000001,
"last_updated": "2025-12-14T06:36:21.236816",
"interaction_count": 3,
"learning_queue": [],
"active_goals": [],
"preferences": {
"verbosity": "medium",
"formality": "casual",
"proactivity": 0.3
},
"metadata": {
"version": "1.0",
"created_at": "2025-12-14T03:28:49.364768"
}
}

View File

@@ -59,17 +59,44 @@ Guidelines:
# Build persona prompt # Build persona prompt
# ============================================================ # ============================================================
def build_speak_prompt(final_answer: str) -> str: def build_speak_prompt(final_answer: str, tone: str = "neutral", depth: str = "medium") -> str:
""" """
Wrap Cortex's final neutral answer in the Lyra persona. Wrap Cortex's final neutral answer in the Lyra persona.
Cortex → neutral reasoning Cortex → neutral reasoning
Speak → stylistic transformation Speak → stylistic transformation
The LLM sees the original answer and rewrites it in Lyra's voice. The LLM sees the original answer and rewrites it in Lyra's voice.
Args:
final_answer: The neutral reasoning output
tone: Desired emotional tone (neutral | warm | focused | playful | direct)
depth: Response depth (short | medium | deep)
""" """
# Tone-specific guidance
tone_guidance = {
"neutral": "balanced and professional",
"warm": "friendly and empathetic",
"focused": "precise and technical",
"playful": "light and engaging",
"direct": "concise and straightforward"
}
depth_guidance = {
"short": "Keep responses brief and to-the-point.",
"medium": "Provide balanced detail.",
"deep": "Elaborate thoroughly with nuance and examples."
}
tone_hint = tone_guidance.get(tone, "balanced and professional")
depth_hint = depth_guidance.get(depth, "Provide balanced detail.")
return f""" return f"""
{PERSONA_STYLE} {PERSONA_STYLE}
Tone guidance: Your response should be {tone_hint}.
Depth guidance: {depth_hint}
Rewrite the following message into Lyra's natural voice. Rewrite the following message into Lyra's natural voice.
Preserve meaning exactly. Preserve meaning exactly.
@@ -84,16 +111,21 @@ Preserve meaning exactly.
# Public API — async wrapper # Public API — async wrapper
# ============================================================ # ============================================================
async def speak(final_answer: str) -> str: async def speak(final_answer: str, tone: str = "neutral", depth: str = "medium") -> str:
""" """
Given the final refined answer from Cortex, Given the final refined answer from Cortex,
apply Lyra persona styling using the designated backend. apply Lyra persona styling using the designated backend.
Args:
final_answer: The polished answer from refinement stage
tone: Desired emotional tone (neutral | warm | focused | playful | direct)
depth: Response depth (short | medium | deep)
""" """
if not final_answer: if not final_answer:
return "" return ""
prompt = build_speak_prompt(final_answer) prompt = build_speak_prompt(final_answer, tone, depth)
backend = SPEAK_BACKEND backend = SPEAK_BACKEND

View File

@@ -45,7 +45,9 @@ async def reason_check(
identity_block: dict | None, identity_block: dict | None,
rag_block: dict | None, rag_block: dict | None,
reflection_notes: list[str], reflection_notes: list[str],
context: dict | None = None context: dict | None = None,
monologue: dict | None = None, # NEW: Inner monologue guidance
executive_plan: dict | None = None # NEW: Executive plan for complex tasks
) -> str: ) -> str:
""" """
Build the *draft answer* for Lyra Cortex. Build the *draft answer* for Lyra Cortex.
@@ -57,6 +59,8 @@ async def reason_check(
rag_block: Relevant long-term memories from NeoMem rag_block: Relevant long-term memories from NeoMem
reflection_notes: Meta-awareness notes from reflection stage reflection_notes: Meta-awareness notes from reflection stage
context: Unified context state from context.py (session state, intake, rag, etc.) context: Unified context state from context.py (session state, intake, rag, etc.)
monologue: Inner monologue analysis (intent, tone, depth, consult_executive)
executive_plan: Executive plan for complex queries (steps, tools, strategy)
""" """
# -------------------------------------------------------- # --------------------------------------------------------
@@ -79,6 +83,52 @@ async def reason_check(
except Exception: except Exception:
identity_txt = f"Identity Rules:\n{str(identity_block)}\n\n" identity_txt = f"Identity Rules:\n{str(identity_block)}\n\n"
# --------------------------------------------------------
# Inner Monologue guidance (NEW)
# --------------------------------------------------------
monologue_section = ""
if monologue:
intent = monologue.get("intent", "unknown")
tone_desired = monologue.get("tone", "neutral")
depth_desired = monologue.get("depth", "medium")
monologue_section = f"""
=== INNER MONOLOGUE GUIDANCE ===
User Intent Detected: {intent}
Desired Tone: {tone_desired}
Desired Response Depth: {depth_desired}
Adjust your response accordingly:
- Focus on addressing the {intent} intent
- Aim for {depth_desired} depth (short/medium/deep)
- The persona layer will handle {tone_desired} tone, focus on content
"""
# --------------------------------------------------------
# Executive Plan (NEW)
# --------------------------------------------------------
plan_section = ""
if executive_plan:
plan_section = f"""
=== EXECUTIVE PLAN ===
Task Complexity: {executive_plan.get('estimated_complexity', 'unknown')}
Plan Summary: {executive_plan.get('summary', 'No summary')}
Detailed Plan:
{executive_plan.get('plan_text', 'No detailed plan available')}
Required Steps:
"""
for idx, step in enumerate(executive_plan.get('steps', []), 1):
plan_section += f"{idx}. {step}\n"
tools_needed = executive_plan.get('tools_needed', [])
if tools_needed:
plan_section += f"\nTools to leverage: {', '.join(tools_needed)}\n"
plan_section += "\nFollow this plan while generating your response.\n\n"
# -------------------------------------------------------- # --------------------------------------------------------
# RAG block (optional factual grounding) # RAG block (optional factual grounding)
# -------------------------------------------------------- # --------------------------------------------------------
@@ -164,6 +214,8 @@ async def reason_check(
prompt = ( prompt = (
f"{notes_section}" f"{notes_section}"
f"{identity_txt}" f"{identity_txt}"
f"{monologue_section}" # NEW: Intent/tone/depth guidance
f"{plan_section}" # NEW: Executive plan if generated
f"{context_txt}" # Context BEFORE RAG for better coherence f"{context_txt}" # Context BEFORE RAG for better coherence
f"{rag_txt}" f"{rag_txt}"
f"User message:\n{user_prompt}\n\n" f"User message:\n{user_prompt}\n\n"

View File

@@ -99,6 +99,7 @@ async def run_reason(req: ReasonRequest):
if VERBOSE_DEBUG: if VERBOSE_DEBUG:
logger.debug("[STAGE 0.6] Running inner monologue...") logger.debug("[STAGE 0.6] Running inner monologue...")
inner_result = None
try: try:
self_state = load_self_state() self_state = load_self_state()
@@ -112,9 +113,33 @@ async def run_reason(req: ReasonRequest):
inner_result = await inner_monologue.process(mono_context) inner_result = await inner_monologue.process(mono_context)
logger.info(f"[INNER_MONOLOGUE] {inner_result}") logger.info(f"[INNER_MONOLOGUE] {inner_result}")
# Store in context for downstream use
context_state["monologue"] = inner_result
except Exception as e: except Exception as e:
logger.warning(f"[INNER_MONOLOGUE] failed: {e}") logger.warning(f"[INNER_MONOLOGUE] failed: {e}")
# ----------------------------------------------------------------
# STAGE 0.7 — Executive Planning (conditional)
# ----------------------------------------------------------------
executive_plan = None
if inner_result and inner_result.get("consult_executive"):
if VERBOSE_DEBUG:
logger.debug("[STAGE 0.7] Executive consultation requested...")
try:
from autonomy.executive.planner import plan_execution
executive_plan = await plan_execution(
user_prompt=req.user_prompt,
intent=inner_result.get("intent", "unknown"),
context_state=context_state,
identity_block=identity_block
)
logger.info(f"[EXECUTIVE] Generated plan: {executive_plan.get('summary', 'N/A')}")
except Exception as e:
logger.warning(f"[EXECUTIVE] Planning failed: {e}")
executive_plan = None
# ---------------------------------------------------------------- # ----------------------------------------------------------------
# STAGE 1 — Intake summary # STAGE 1 — Intake summary
# ---------------------------------------------------------------- # ----------------------------------------------------------------
@@ -154,7 +179,9 @@ async def run_reason(req: ReasonRequest):
identity_block=identity_block, identity_block=identity_block,
rag_block=context_state.get("rag", []), rag_block=context_state.get("rag", []),
reflection_notes=reflection_notes, reflection_notes=reflection_notes,
context=context_state context=context_state,
monologue=inner_result, # NEW: Pass monologue guidance
executive_plan=executive_plan # NEW: Pass executive plan
) )
# ---------------------------------------------------------------- # ----------------------------------------------------------------
@@ -178,13 +205,31 @@ async def run_reason(req: ReasonRequest):
if VERBOSE_DEBUG: if VERBOSE_DEBUG:
logger.debug("[STAGE 5] Applying persona layer...") logger.debug("[STAGE 5] Applying persona layer...")
persona_answer = await speak(final_neutral) # Extract tone and depth from monologue for persona guidance
tone = inner_result.get("tone", "neutral") if inner_result else "neutral"
depth = inner_result.get("depth", "medium") if inner_result else "medium"
persona_answer = await speak(final_neutral, tone=tone, depth=depth)
# ---------------------------------------------------------------- # ----------------------------------------------------------------
# STAGE 6 — Session update # STAGE 6 — Session update
# ---------------------------------------------------------------- # ----------------------------------------------------------------
update_last_assistant_message(req.session_id, persona_answer) update_last_assistant_message(req.session_id, persona_answer)
# ----------------------------------------------------------------
# STAGE 6.5 — Self-state update
# ----------------------------------------------------------------
try:
from autonomy.self.analyzer import analyze_and_update_state
await analyze_and_update_state(
monologue=inner_result or {},
user_prompt=req.user_prompt,
response=persona_answer,
context=context_state
)
except Exception as e:
logger.warning(f"[SELF_STATE] Update failed: {e}")
if VERBOSE_DEBUG: if VERBOSE_DEBUG:
logger.debug(f"\n{'='*80}") logger.debug(f"\n{'='*80}")
logger.debug(f"[PIPELINE COMPLETE] Session: {req.session_id}") logger.debug(f"[PIPELINE COMPLETE] Session: {req.session_id}")

1
cortex/tests/__init__.py Normal file
View File

@@ -0,0 +1 @@
"""Tests for Project Lyra Cortex."""

View File

@@ -0,0 +1,197 @@
"""
Integration tests for Phase 1 autonomy features.
Tests monologue integration, executive planning, and self-state persistence.
"""
import asyncio
import json
import sys
import os
# Add parent directory to path for imports
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from autonomy.monologue.monologue import InnerMonologue
from autonomy.self.state import load_self_state, update_self_state, get_self_state_instance
from autonomy.executive.planner import plan_execution
async def test_monologue_integration():
"""Test monologue generates valid output."""
print("\n" + "="*60)
print("TEST 1: Monologue Integration")
print("="*60)
mono = InnerMonologue()
context = {
"user_message": "Explain quantum computing to me like I'm 5",
"session_id": "test_001",
"self_state": load_self_state(),
"context_summary": {"message_count": 5}
}
result = await mono.process(context)
assert "intent" in result, "Missing intent field"
assert "tone" in result, "Missing tone field"
assert "depth" in result, "Missing depth field"
assert "consult_executive" in result, "Missing consult_executive field"
print("✓ Monologue integration test passed")
print(f" Result: {json.dumps(result, indent=2)}")
return result
async def test_executive_planning():
"""Test executive planner generates valid plans."""
print("\n" + "="*60)
print("TEST 2: Executive Planning")
print("="*60)
plan = await plan_execution(
user_prompt="Help me build a distributed system with microservices architecture",
intent="technical_implementation",
context_state={
"tools_available": ["RAG", "WEB", "CODEBRAIN"],
"message_count": 3,
"minutes_since_last_msg": 2.5,
"active_project": None
},
identity_block={}
)
assert "summary" in plan, "Missing summary field"
assert "plan_text" in plan, "Missing plan_text field"
assert "steps" in plan, "Missing steps field"
assert len(plan["steps"]) > 0, "No steps generated"
print("✓ Executive planning test passed")
print(f" Plan summary: {plan['summary']}")
print(f" Steps: {len(plan['steps'])}")
print(f" Complexity: {plan.get('estimated_complexity', 'unknown')}")
return plan
def test_self_state_persistence():
"""Test self-state loads and updates."""
print("\n" + "="*60)
print("TEST 3: Self-State Persistence")
print("="*60)
state1 = load_self_state()
assert "mood" in state1, "Missing mood field"
assert "energy" in state1, "Missing energy field"
assert "interaction_count" in state1, "Missing interaction_count"
initial_count = state1.get("interaction_count", 0)
print(f" Initial interaction count: {initial_count}")
update_self_state(
mood_delta=0.1,
energy_delta=-0.05,
new_focus="testing"
)
state2 = load_self_state()
assert state2["interaction_count"] == initial_count + 1, "Interaction count not incremented"
assert state2["focus"] == "testing", "Focus not updated"
print("✓ Self-state persistence test passed")
print(f" New interaction count: {state2['interaction_count']}")
print(f" New focus: {state2['focus']}")
print(f" New energy: {state2['energy']:.2f}")
return state2
async def test_end_to_end_flow():
"""Test complete flow from monologue through planning."""
print("\n" + "="*60)
print("TEST 4: End-to-End Flow")
print("="*60)
# Step 1: Monologue detects complex query
mono = InnerMonologue()
mono_result = await mono.process({
"user_message": "Design a scalable ML pipeline with CI/CD integration",
"session_id": "test_e2e",
"self_state": load_self_state(),
"context_summary": {}
})
print(f" Monologue intent: {mono_result.get('intent')}")
print(f" Consult executive: {mono_result.get('consult_executive')}")
# Step 2: If executive requested, generate plan
if mono_result.get("consult_executive"):
plan = await plan_execution(
user_prompt="Design a scalable ML pipeline with CI/CD integration",
intent=mono_result.get("intent", "unknown"),
context_state={"tools_available": ["CODEBRAIN", "WEB"]},
identity_block={}
)
assert plan is not None, "Plan should be generated"
print(f" Executive plan generated: {len(plan.get('steps', []))} steps")
# Step 3: Update self-state
update_self_state(
energy_delta=-0.1, # Complex task is tiring
new_focus="ml_pipeline_design",
confidence_delta=0.05
)
state = load_self_state()
assert state["focus"] == "ml_pipeline_design", "Focus should be updated"
print("✓ End-to-end flow test passed")
print(f" Final state: {state['mood']}, energy={state['energy']:.2f}")
return True
async def run_all_tests():
"""Run all Phase 1 tests."""
print("\n" + "="*60)
print("PHASE 1 AUTONOMY TESTS")
print("="*60)
try:
# Test 1: Monologue
mono_result = await test_monologue_integration()
# Test 2: Executive Planning
plan_result = await test_executive_planning()
# Test 3: Self-State
state_result = test_self_state_persistence()
# Test 4: End-to-End
await test_end_to_end_flow()
print("\n" + "="*60)
print("ALL TESTS PASSED ✓")
print("="*60)
print("\nSummary:")
print(f" - Monologue: {mono_result.get('intent')} ({mono_result.get('tone')})")
print(f" - Executive: {plan_result.get('estimated_complexity')} complexity")
print(f" - Self-state: {state_result.get('interaction_count')} interactions")
return True
except Exception as e:
print("\n" + "="*60)
print(f"TEST FAILED: {e}")
print("="*60)
import traceback
traceback.print_exc()
return False
if __name__ == "__main__":
success = asyncio.run(run_all_tests())
sys.exit(0 if success else 1)