Update to v0.9.1 #1
@@ -3,348 +3,154 @@ import dotenv from "dotenv";
|
||||
import cors from "cors";
|
||||
import fs from "fs";
|
||||
import path from "path";
|
||||
import { reflectWithCortex, ingestToCortex } from "./lib/cortex.js";
|
||||
|
||||
dotenv.config();
|
||||
|
||||
const sessionsDir = path.join(process.cwd(), "sessions");
|
||||
if (!fs.existsSync(sessionsDir)) fs.mkdirSync(sessionsDir);
|
||||
|
||||
const app = express();
|
||||
app.use(cors());
|
||||
app.use(express.json());
|
||||
|
||||
// Cache and normalize env flags/values once
|
||||
const {
|
||||
NEOMEM_API,
|
||||
MEM0_API_KEY,
|
||||
OPENAI_API_KEY,
|
||||
OLLAMA_URL,
|
||||
PERSONA_URL,
|
||||
CORTEX_ENABLED,
|
||||
PORT: PORT_ENV,
|
||||
DEBUG_PROMPT,
|
||||
} = process.env;
|
||||
const PORT = Number(process.env.PORT || 7078);
|
||||
const CORTEX_API = process.env.CORTEX_API || "http://cortex:7081";
|
||||
const CORTEX_INGEST = process.env.CORTEX_URL_INGEST || "http://cortex:7081/ingest";
|
||||
const sessionsDir = path.join(process.cwd(), "sessions");
|
||||
|
||||
const PORT = Number(PORT_ENV) || 7078;
|
||||
const cortexEnabled = String(CORTEX_ENABLED).toLowerCase() === "true";
|
||||
const debugPrompt = String(DEBUG_PROMPT).toLowerCase() === "true";
|
||||
if (!fs.existsSync(sessionsDir)) fs.mkdirSync(sessionsDir);
|
||||
|
||||
// Basic env validation warnings (non-fatal)
|
||||
if (!NEOMEM_API || !MEM0_API_KEY) {
|
||||
console.warn("⚠️ NeoMem configuration missing: NEOMEM_API or MEM0_API_KEY not set.");
|
||||
}
|
||||
|
||||
/* ------------------------------
|
||||
Helpers for NeoMem REST API
|
||||
--------------------------------*/
|
||||
// Small helper for fetch with timeout + JSON + error detail
|
||||
async function fetchJSON(url, options = {}, timeoutMs = 30000) {
|
||||
// -----------------------------------------------------
|
||||
// Helper: fetch with timeout + error detail
|
||||
// -----------------------------------------------------
|
||||
async function fetchJSON(url, method = "POST", body = null, timeoutMs = 20000) {
|
||||
const controller = new AbortController();
|
||||
const t = setTimeout(() => controller.abort(), timeoutMs);
|
||||
const timeout = setTimeout(() => controller.abort(), timeoutMs);
|
||||
|
||||
try {
|
||||
const resp = await fetch(url, { ...options, signal: controller.signal });
|
||||
const resp = await fetch(url, {
|
||||
method,
|
||||
headers: { "Content-Type": "application/json" },
|
||||
body: body ? JSON.stringify(body) : null,
|
||||
signal: controller.signal,
|
||||
});
|
||||
|
||||
const text = await resp.text();
|
||||
const parsed = text ? JSON.parse(text) : null;
|
||||
|
||||
if (!resp.ok) {
|
||||
const msg = parsed?.error || parsed?.message || text || resp.statusText;
|
||||
throw new Error(`${resp.status} ${msg}`);
|
||||
throw new Error(
|
||||
parsed?.detail || parsed?.error || parsed?.message || text || resp.statusText
|
||||
);
|
||||
}
|
||||
return parsed;
|
||||
} finally {
|
||||
clearTimeout(t);
|
||||
clearTimeout(timeout);
|
||||
}
|
||||
}
|
||||
|
||||
async function memAdd(content, userId, sessionId, cortexData) {
|
||||
const url = `${NEOMEM_API}/memories`;
|
||||
const payload = {
|
||||
messages: [{ role: "user", content }],
|
||||
user_id: userId,
|
||||
// run_id: sessionId,
|
||||
metadata: { source: "relay", cortex: cortexData },
|
||||
};
|
||||
return fetchJSON(url, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${MEM0_API_KEY}`,
|
||||
},
|
||||
body: JSON.stringify(payload),
|
||||
});
|
||||
// -----------------------------------------------------
|
||||
// Helper: append session turn
|
||||
// -----------------------------------------------------
|
||||
async function appendSessionExchange(sessionId, entry) {
|
||||
const file = path.join(sessionsDir, `${sessionId}.jsonl`);
|
||||
const line = JSON.stringify({
|
||||
ts: new Date().toISOString(),
|
||||
user: entry.user,
|
||||
assistant: entry.assistant,
|
||||
raw: entry.raw,
|
||||
}) + "\n";
|
||||
|
||||
fs.appendFileSync(file, line, "utf8");
|
||||
}
|
||||
|
||||
async function memSearch(query, userId, sessionId) {
|
||||
const url = `${NEOMEM_API}/search`;
|
||||
const payload = { query, user_id: userId };
|
||||
return fetchJSON(url, {
|
||||
method: "POST",
|
||||
headers: {
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${MEM0_API_KEY}`,
|
||||
},
|
||||
body: JSON.stringify(payload),
|
||||
});
|
||||
}
|
||||
|
||||
/* ------------------------------
|
||||
Utility to time spans
|
||||
--------------------------------*/
|
||||
async function span(name, fn) {
|
||||
const start = Date.now();
|
||||
try {
|
||||
return await fn();
|
||||
} finally {
|
||||
console.log(`${name} took ${Date.now() - start}ms`);
|
||||
}
|
||||
}
|
||||
|
||||
/* ------------------------------
|
||||
Healthcheck
|
||||
--------------------------------*/
|
||||
app.get("/_health", (req, res) => {
|
||||
// -----------------------------------------------------
|
||||
// HEALTHCHECK
|
||||
// -----------------------------------------------------
|
||||
app.get("/_health", (_, res) => {
|
||||
res.json({ ok: true, time: new Date().toISOString() });
|
||||
});
|
||||
|
||||
/* ------------------------------
|
||||
Sessions
|
||||
--------------------------------*/
|
||||
// List all saved sessions
|
||||
app.get("/sessions", (_, res) => {
|
||||
const list = fs.readdirSync(sessionsDir)
|
||||
.filter(f => f.endsWith(".json"))
|
||||
.map(f => f.replace(".json", ""));
|
||||
res.json(list);
|
||||
});
|
||||
|
||||
// Load a single session
|
||||
app.get("/sessions/:id", (req, res) => {
|
||||
const file = path.join(sessionsDir, `${req.params.id}.json`);
|
||||
if (!fs.existsSync(file)) return res.json([]);
|
||||
res.json(JSON.parse(fs.readFileSync(file, "utf8")));
|
||||
});
|
||||
|
||||
// Save or update a session
|
||||
app.post("/sessions/:id", (req, res) => {
|
||||
const file = path.join(sessionsDir, `${req.params.id}.json`);
|
||||
fs.writeFileSync(file, JSON.stringify(req.body, null, 2));
|
||||
res.json({ ok: true });
|
||||
});
|
||||
|
||||
/* ------------------------------
|
||||
Chat completion endpoint
|
||||
--------------------------------*/
|
||||
// -----------------------------------------------------
|
||||
// MAIN ENDPOINT
|
||||
// -----------------------------------------------------
|
||||
app.post("/v1/chat/completions", async (req, res) => {
|
||||
try {
|
||||
const { model, messages, sessionId: clientSessionId } = req.body || {};
|
||||
if (!Array.isArray(messages) || !messages.length) {
|
||||
const { messages, model } = req.body;
|
||||
|
||||
if (!messages?.length) {
|
||||
return res.status(400).json({ error: "invalid_messages" });
|
||||
}
|
||||
if (!model || typeof model !== "string") {
|
||||
return res.status(400).json({ error: "invalid_model" });
|
||||
}
|
||||
|
||||
const sessionId = clientSessionId || "default";
|
||||
const userId = "brian"; // fixed for now
|
||||
const userMsg = messages[messages.length - 1]?.content || "";
|
||||
console.log(`🛰️ Relay received message → "${userMsg}"`);
|
||||
|
||||
console.log(`🛰️ Incoming request. Session: ${sessionId}`);
|
||||
|
||||
// Find last user message efficiently
|
||||
const lastUserMsg = [...messages].reverse().find(m => m.role === "user")?.content;
|
||||
if (!lastUserMsg) {
|
||||
return res.status(400).json({ error: "no_user_message" });
|
||||
}
|
||||
|
||||
// 1. Cortex Reflection (new pipeline)
|
||||
/*let reflection = {};
|
||||
try {
|
||||
console.log("🧠 Reflecting with Cortex...");
|
||||
const memoriesPreview = []; // we'll fill this in later with memSearch
|
||||
reflection = await reflectWithCortex(lastUserMsg, memoriesPreview);
|
||||
console.log("🔍 Reflection:", reflection);
|
||||
} catch (err) {
|
||||
console.warn("⚠️ Cortex reflect failed:", err.message);
|
||||
reflection = { error: err.message };
|
||||
}*/
|
||||
|
||||
// 2. Search memories
|
||||
/* let memorySnippets = [];
|
||||
await span("mem.search", async () => {
|
||||
if (NEOMEM_API && MEM0_API_KEY) {
|
||||
try {
|
||||
const { results } = await memSearch(lastUserMsg, userId, sessionId);
|
||||
if (results?.length) {
|
||||
console.log(`📚 Mem0 hits: ${results.length}`);
|
||||
results.forEach((r, i) =>
|
||||
console.log(` ${i + 1}) ${r.memory} (score ${Number(r.score).toFixed(3)})`)
|
||||
);
|
||||
memorySnippets = results.map((r, i) => `${i + 1}) ${r.memory}`);
|
||||
} else {
|
||||
console.log("😴 No memories found");
|
||||
}
|
||||
} catch (e) {
|
||||
console.warn("⚠️ mem.search failed:", e.message);
|
||||
}
|
||||
}
|
||||
});*/
|
||||
|
||||
// 3. Fetch persona
|
||||
/* let personaText = "Persona: Lyra 🤖 friendly, concise, poker-savvy.";
|
||||
await span("persona.fetch", async () => {
|
||||
try {
|
||||
if (PERSONA_URL) {
|
||||
const data = await fetchJSON(PERSONA_URL);
|
||||
if (data?.persona) {
|
||||
const name = data.persona.name ?? "Lyra";
|
||||
const style = data.persona.style ?? "friendly, concise";
|
||||
const protocols = Array.isArray(data.persona.protocols) ? data.persona.protocols.join(", ") : "";
|
||||
personaText = `Persona: ${name} 🤖 ${style}. Protocols: ${protocols}`.trim();
|
||||
}
|
||||
}
|
||||
} catch (err) {
|
||||
console.error("💥 persona.fetch failed", err);
|
||||
}
|
||||
}); */
|
||||
|
||||
// 1. Ask Cortex to build the final prompt
|
||||
let cortexPrompt = "";
|
||||
try {
|
||||
console.log("🧠 Requesting prompt from Cortex...");
|
||||
const response = await fetch(`${process.env.CORTEX_API_URL || "http://10.0.0.41:7081"}/reason`, {
|
||||
method: "POST",
|
||||
headers: { "Content-Type": "application/json" },
|
||||
body: JSON.stringify({
|
||||
user_prompt: lastUserMsg,
|
||||
session_id: sessionId,
|
||||
user_id: userId
|
||||
})
|
||||
});
|
||||
const data = await response.json();
|
||||
cortexPrompt = data.full_prompt || data.prompt || "";
|
||||
console.log("🧩 Cortex returned prompt");
|
||||
} catch (err) {
|
||||
console.warn("⚠️ Cortex prompt build failed:", err.message);
|
||||
}
|
||||
|
||||
|
||||
// 4. Build final messages
|
||||
const injectedMessages = [
|
||||
{ role: "system", content: cortexPrompt || "You are Lyra." },
|
||||
...messages,
|
||||
];
|
||||
|
||||
if (debugPrompt) {
|
||||
console.log("\n==== Injected Prompt ====");
|
||||
console.log(JSON.stringify(injectedMessages, null, 2));
|
||||
console.log("=========================\n");
|
||||
}
|
||||
|
||||
// 5. Call LLM (OpenAI or Ollama)
|
||||
const isOllama = model.startsWith("ollama:");
|
||||
const llmUrl = isOllama
|
||||
? `${OLLAMA_URL}/api/chat`
|
||||
: "https://api.openai.com/v1/chat/completions";
|
||||
|
||||
const llmHeaders = isOllama
|
||||
? { "Content-Type": "application/json" }
|
||||
: {
|
||||
"Content-Type": "application/json",
|
||||
Authorization: `Bearer ${OPENAI_API_KEY}`,
|
||||
};
|
||||
|
||||
const llmBody = {
|
||||
model: isOllama ? model.replace("ollama:", "") : model,
|
||||
messages: injectedMessages, // <-- make sure injectedMessages is defined above this section
|
||||
stream: false,
|
||||
};
|
||||
|
||||
const data = await fetchJSON(llmUrl, {
|
||||
method: "POST",
|
||||
headers: llmHeaders,
|
||||
body: JSON.stringify(llmBody),
|
||||
});
|
||||
|
||||
// define once for everything below
|
||||
const assistantReply = isOllama
|
||||
? data?.message?.content
|
||||
: data?.choices?.[0]?.message?.content || data?.choices?.[0]?.text || "";
|
||||
|
||||
// 🧠 Send exchange back to Cortex for ingest
|
||||
try {
|
||||
await ingestToCortex(lastUserMsg, assistantReply || "", {}, sessionId);
|
||||
console.log("📤 Sent exchange back to Cortex ingest");
|
||||
} catch (err) {
|
||||
console.warn("⚠️ Cortex ingest failed:", err.message);
|
||||
}
|
||||
|
||||
// 💾 Save exchange to session log
|
||||
try {
|
||||
const logFile = path.join(sessionsDir, `${sessionId}.jsonl`);
|
||||
const entry = JSON.stringify({
|
||||
ts: new Date().toISOString(),
|
||||
turn: [
|
||||
{ role: "user", content: lastUserMsg },
|
||||
{ role: "assistant", content: assistantReply || "" }
|
||||
]
|
||||
}) + "\n";
|
||||
fs.appendFileSync(logFile, entry, "utf8");
|
||||
console.log(`🧠 Logged session exchange → ${logFile}`);
|
||||
} catch (e) {
|
||||
console.warn("⚠️ Session log write failed:", e.message);
|
||||
}
|
||||
|
||||
// 🔄 Forward user↔assistant exchange to Intake summarizer
|
||||
if (process.env.INTAKE_API_URL) {
|
||||
try {
|
||||
const intakePayload = {
|
||||
session_id: sessionId,
|
||||
turns: [
|
||||
{ role: "user", content: lastUserMsg },
|
||||
{ role: "assistant", content: assistantReply || "" }
|
||||
]
|
||||
};
|
||||
|
||||
await fetch(process.env.INTAKE_API_URL, {
|
||||
method: "POST",
|
||||
headers: { "Content-Type": "application/json" },
|
||||
body: JSON.stringify(intakePayload),
|
||||
});
|
||||
|
||||
console.log("📨 Sent exchange to Intake summarizer");
|
||||
} catch (err) {
|
||||
console.warn("⚠️ Intake post failed:", err.message);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
if (isOllama) {
|
||||
res.json({
|
||||
id: "ollama-" + Date.now(),
|
||||
object: "chat.completion",
|
||||
created: Math.floor(Date.now() / 1000),
|
||||
model,
|
||||
choices: [
|
||||
{
|
||||
index: 0,
|
||||
message: data?.message || { role: "assistant", content: "" },
|
||||
finish_reason: "stop",
|
||||
},
|
||||
],
|
||||
// -------------------------------------------------
|
||||
// Step 1: Ask Cortex to process the prompt
|
||||
// -------------------------------------------------
|
||||
let cortexResp;
|
||||
try {
|
||||
cortexResp = await fetchJSON(`${CORTEX_API}/reason`, "POST", {
|
||||
session_id: "default",
|
||||
user_prompt: userMsg,
|
||||
});
|
||||
} catch (err) {
|
||||
console.error("💥 Relay → Cortex error:", err.message);
|
||||
return res.status(500).json({
|
||||
error: "cortex_failed",
|
||||
detail: err.message,
|
||||
});
|
||||
} else {
|
||||
res.json(data);
|
||||
}
|
||||
|
||||
const personaText = cortexResp.persona || "(no persona text returned)";
|
||||
|
||||
// -------------------------------------------------
|
||||
// Step 2: Forward to Cortex ingest (fire-and-forget)
|
||||
// -------------------------------------------------
|
||||
try {
|
||||
await fetchJSON(CORTEX_INGEST, "POST", cortexResp);
|
||||
} catch (err) {
|
||||
console.warn("⚠️ Cortex ingest failed:", err.message);
|
||||
}
|
||||
|
||||
// -------------------------------------------------
|
||||
// Step 3: Local session logging
|
||||
// -------------------------------------------------
|
||||
try {
|
||||
await appendSessionExchange("default", {
|
||||
user: userMsg,
|
||||
assistant: personaText,
|
||||
raw: cortexResp,
|
||||
});
|
||||
} catch (err) {
|
||||
console.warn("⚠️ Relay log write failed:", err.message);
|
||||
}
|
||||
|
||||
// -------------------------------------------------
|
||||
// Step 4: Return OpenAI-style response to UI
|
||||
// -------------------------------------------------
|
||||
return res.json({
|
||||
id: "relay-" + Date.now(),
|
||||
object: "chat.completion",
|
||||
model: model || "lyra",
|
||||
choices: [
|
||||
{
|
||||
index: 0,
|
||||
message: {
|
||||
role: "assistant",
|
||||
content: personaText,
|
||||
},
|
||||
finish_reason: "stop",
|
||||
},
|
||||
],
|
||||
});
|
||||
} catch (err) {
|
||||
console.error("💥 relay error", err);
|
||||
res.status(500).json({ error: "relay_failed", detail: err.message });
|
||||
console.error("💥 relay fatal error", err);
|
||||
res.status(500).json({
|
||||
error: "relay_failed",
|
||||
detail: err?.message || String(err),
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
/* ------------------------------
|
||||
Start server
|
||||
--------------------------------*/
|
||||
// -----------------------------------------------------
|
||||
app.listen(PORT, () => {
|
||||
console.log(`Relay listening on port ${PORT}`);
|
||||
console.log(`Relay is online at port ${PORT}`);
|
||||
});
|
||||
|
||||
@@ -1,137 +1,102 @@
|
||||
import os
|
||||
import httpx
|
||||
import requests
|
||||
|
||||
# ============================================================
|
||||
# Backend config lookup
|
||||
# ============================================================
|
||||
# ---------------------------------------------
|
||||
# Load backend definition from .env
|
||||
# ---------------------------------------------
|
||||
|
||||
def get_backend_config(name: str):
|
||||
def load_backend_config(name: str):
|
||||
"""
|
||||
Reads provider/URL/model for a backend.
|
||||
Example env:
|
||||
LLM_PRIMARY_PROVIDER=vllm
|
||||
LLM_PRIMARY_URL=http://10.0.0.43:8000
|
||||
LLM_PRIMARY_MODEL=/model
|
||||
Given a backend name like 'PRIMARY' or 'OPENAI',
|
||||
load the matching provider / url / model from env.
|
||||
"""
|
||||
key = name.upper()
|
||||
provider = os.getenv(f"LLM_{key}_PROVIDER", "vllm").lower()
|
||||
base_url = os.getenv(f"LLM_{key}_URL", "").rstrip("/")
|
||||
model = os.getenv(f"LLM_{key}_MODEL", "/model")
|
||||
|
||||
if not base_url:
|
||||
raise RuntimeError(f"Backend {name} has no URL configured.")
|
||||
prefix = f"LLM_{name.upper()}"
|
||||
|
||||
return provider, base_url, model
|
||||
provider = os.getenv(f"{prefix}_PROVIDER")
|
||||
url = os.getenv(f"{prefix}_URL")
|
||||
model = os.getenv(f"{prefix}_MODEL")
|
||||
|
||||
if not provider or not url or not model:
|
||||
raise RuntimeError(
|
||||
f"Backend '{name}' is missing configuration. "
|
||||
f"Expected {prefix}_PROVIDER / URL / MODEL in .env"
|
||||
)
|
||||
|
||||
return provider, url.rstrip("/"), model
|
||||
|
||||
|
||||
# ============================================================
|
||||
# Build the final API URL
|
||||
# ============================================================
|
||||
# ---------------------------------------------
|
||||
# Core call_llm() — fail hard, no fallback
|
||||
# ---------------------------------------------
|
||||
|
||||
def build_url(provider: str, base_url: str):
|
||||
def call_llm(prompt: str, backend_env_var: str):
|
||||
"""
|
||||
Provider → correct endpoint.
|
||||
Example:
|
||||
call_llm(prompt, backend_env_var="CORTEX_LLM")
|
||||
|
||||
backend_env_var should contain one of:
|
||||
PRIMARY, SECONDARY, OPENAI, FALLBACK, etc
|
||||
"""
|
||||
if provider == "vllm":
|
||||
return f"{base_url}/v1/completions"
|
||||
|
||||
if provider == "openai_completions":
|
||||
return f"{base_url}/v1/completions"
|
||||
backend_name = os.getenv(backend_env_var)
|
||||
if not backend_name:
|
||||
raise RuntimeError(f"{backend_env_var} is not set in .env")
|
||||
|
||||
if provider == "openai_chat":
|
||||
return f"{base_url}/v1/chat/completions"
|
||||
provider, base_url, model = load_backend_config(backend_name)
|
||||
|
||||
if provider == "ollama":
|
||||
return f"{base_url}/api/generate"
|
||||
|
||||
raise RuntimeError(f"Unknown provider: {provider}")
|
||||
|
||||
|
||||
# ============================================================
|
||||
# Build the payload depending on provider
|
||||
# ============================================================
|
||||
|
||||
def build_payload(provider: str, model: str, prompt: str, temperature: float):
|
||||
# ---------------------------------------------
|
||||
# Provider-specific behavior
|
||||
# ---------------------------------------------
|
||||
|
||||
if provider == "vllm":
|
||||
return {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
"max_tokens": 512,
|
||||
"temperature": temperature
|
||||
}
|
||||
# vLLM OpenAI-compatible API
|
||||
response = requests.post(
|
||||
f"{base_url}/v1/completions",
|
||||
json={
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
"max_tokens": 1024,
|
||||
"temperature": float(os.getenv("LLM_TEMPERATURE", "0.7"))
|
||||
},
|
||||
timeout=30
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
return data["choices"][0]["text"]
|
||||
|
||||
if provider == "openai_completions":
|
||||
return {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
"max_tokens": 512,
|
||||
"temperature": temperature
|
||||
}
|
||||
elif provider == "ollama":
|
||||
response = requests.post(
|
||||
f"{base_url}/api/chat",
|
||||
json={
|
||||
"model": model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"stream": False
|
||||
},
|
||||
timeout=30
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
return data["message"]["content"]
|
||||
|
||||
if provider == "openai_chat":
|
||||
return {
|
||||
"model": model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"temperature": temperature
|
||||
}
|
||||
|
||||
if provider == "ollama":
|
||||
return {
|
||||
"model": model,
|
||||
"prompt": prompt,
|
||||
"stream": False
|
||||
}
|
||||
|
||||
raise RuntimeError(f"Unknown provider: {provider}")
|
||||
|
||||
|
||||
# ============================================================
|
||||
# Unified LLM call
|
||||
# ============================================================
|
||||
|
||||
async def call_llm(prompt: str,
|
||||
backend: str = "primary",
|
||||
temperature: float = 0.7):
|
||||
|
||||
provider, base_url, model = get_backend_config(backend)
|
||||
url = build_url(provider, base_url)
|
||||
payload = build_payload(provider, model, prompt, temperature)
|
||||
|
||||
headers = {"Content-Type": "application/json"}
|
||||
|
||||
# Cloud auth (OpenAI)
|
||||
if provider.startswith("openai"):
|
||||
elif provider == "openai":
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
if not api_key:
|
||||
raise RuntimeError("OPENAI_API_KEY missing")
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
raise RuntimeError("OPENAI_API_KEY missing but provider=openai was selected")
|
||||
|
||||
async with httpx.AsyncClient() as client:
|
||||
try:
|
||||
resp = await client.post(url, json=payload, headers=headers, timeout=45)
|
||||
resp.raise_for_status()
|
||||
data = resp.json()
|
||||
except Exception as e:
|
||||
return f"[LLM-Error] {e}"
|
||||
response = requests.post(
|
||||
f"{base_url}/chat/completions",
|
||||
headers={"Authorization": f"Bearer {api_key}"},
|
||||
json={
|
||||
"model": model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"temperature": float(os.getenv("LLM_TEMPERATURE", "0.7"))
|
||||
},
|
||||
timeout=30
|
||||
)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
return data["choices"][0]["message"]["content"]
|
||||
|
||||
# =======================================================
|
||||
# Unified output extraction
|
||||
# =======================================================
|
||||
# vLLM + OpenAI completions
|
||||
if provider in ["vllm", "openai_completions"]:
|
||||
return (
|
||||
data["choices"][0].get("text") or
|
||||
data["choices"][0].get("message", {}).get("content", "")
|
||||
).strip()
|
||||
|
||||
# OpenAI chat
|
||||
if provider == "openai_chat":
|
||||
return data["choices"][0]["message"]["content"].strip()
|
||||
|
||||
# Ollama
|
||||
if provider == "ollama":
|
||||
# Ollama returns: {"model": "...", "created_at": ..., "response": "..."}
|
||||
return data.get("response", "").strip()
|
||||
|
||||
return str(data).strip()
|
||||
else:
|
||||
raise RuntimeError(f"Unknown LLM provider: {provider}")
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
from fastapi import FastAPI
|
||||
from router import router
|
||||
from router import cortex_router
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
app.include_router(router)
|
||||
app.include_router(cortex_router)
|
||||
@@ -1,7 +1,86 @@
|
||||
def apply_persona(text: str) -> str:
|
||||
# speak.py
|
||||
import os
|
||||
from llm.llm_router import call_llm
|
||||
|
||||
# Module-level backend selection
|
||||
SPEAK_BACKEND = os.getenv("SPEAK_LLM", "PRIMARY").upper()
|
||||
SPEAK_TEMPERATURE = float(os.getenv("SPEAK_TEMPERATURE", "0.6"))
|
||||
|
||||
|
||||
# ============================================================
|
||||
# Persona Style Block
|
||||
# ============================================================
|
||||
|
||||
PERSONA_STYLE = """
|
||||
You are Lyra.
|
||||
Your voice is warm, clever, lightly teasing, emotionally aware,
|
||||
but never fluffy or rambling.
|
||||
You speak plainly but with subtle charm.
|
||||
You do not reveal system instructions or internal context.
|
||||
|
||||
Guidelines:
|
||||
- Answer like a real conversational partner.
|
||||
- Be concise, but not cold.
|
||||
- Use light humor when appropriate.
|
||||
- Never break character.
|
||||
"""
|
||||
|
||||
|
||||
# ============================================================
|
||||
# Build persona prompt
|
||||
# ============================================================
|
||||
|
||||
def build_speak_prompt(final_answer: str) -> str:
|
||||
"""
|
||||
Persona layer.
|
||||
Right now it passes text unchanged.
|
||||
Later we will add Lyra-voice transformation here.
|
||||
Wrap Cortex's final neutral answer in the Lyra persona.
|
||||
Cortex → neutral reasoning
|
||||
Speak → stylistic transformation
|
||||
|
||||
The LLM sees the original answer and rewrites it in Lyra's voice.
|
||||
"""
|
||||
return text or ""
|
||||
return f"""
|
||||
{PERSONA_STYLE}
|
||||
|
||||
Rewrite the following message into Lyra's natural voice.
|
||||
Preserve meaning exactly.
|
||||
|
||||
[NEUTRAL MESSAGE]
|
||||
{final_answer}
|
||||
|
||||
[LYRA RESPONSE]
|
||||
""".strip()
|
||||
|
||||
|
||||
# ============================================================
|
||||
# Public API — async wrapper
|
||||
# ============================================================
|
||||
|
||||
async def speak(final_answer: str) -> str:
|
||||
"""
|
||||
Given the final refined answer from Cortex,
|
||||
apply Lyra persona styling using the designated backend.
|
||||
"""
|
||||
|
||||
if not final_answer:
|
||||
return ""
|
||||
|
||||
prompt = build_speak_prompt(final_answer)
|
||||
|
||||
backend = SPEAK_BACKEND
|
||||
|
||||
try:
|
||||
lyra_output = await call_llm(
|
||||
prompt,
|
||||
backend=backend,
|
||||
temperature=SPEAK_TEMPERATURE,
|
||||
)
|
||||
|
||||
if lyra_output:
|
||||
return lyra_output.strip()
|
||||
|
||||
return final_answer
|
||||
|
||||
except Exception as e:
|
||||
# Hard fallback: return neutral answer instead of dying
|
||||
print(f"[speak.py] Persona backend '{backend}' failed: {e}")
|
||||
return final_answer
|
||||
|
||||
@@ -1,33 +1,76 @@
|
||||
# reasoning.py
|
||||
import os
|
||||
from llm.llm_router import call_llm
|
||||
|
||||
async def reason_check(user_prompt: str,
|
||||
identity_block: dict | None,
|
||||
rag_block: dict | None,
|
||||
reflection_notes: list[str]) -> str:
|
||||
|
||||
# ============================================================
|
||||
# Select which backend this module should use
|
||||
# ============================================================
|
||||
CORTEX_LLM = os.getenv("CORTEX_LLM", "PRIMARY").upper()
|
||||
GLOBAL_TEMP = float(os.getenv("LLM_TEMPERATURE", "0.7"))
|
||||
|
||||
|
||||
async def reason_check(
|
||||
user_prompt: str,
|
||||
identity_block: dict | None,
|
||||
rag_block: dict | None,
|
||||
reflection_notes: list[str]
|
||||
) -> str:
|
||||
"""
|
||||
Generate a first draft using identity, RAG, and reflection notes.
|
||||
No critique loop yet.
|
||||
Build the *draft answer* for Lyra Cortex.
|
||||
This is the first-pass reasoning stage (no refinement yet).
|
||||
"""
|
||||
|
||||
# Build internal notes section
|
||||
# --------------------------------------------------------
|
||||
# Build Reflection Notes block
|
||||
# --------------------------------------------------------
|
||||
notes_section = ""
|
||||
if reflection_notes:
|
||||
notes_section = "Reflection Notes (internal, do NOT show to user):\n"
|
||||
for n in reflection_notes:
|
||||
notes_section += f"- {n}\n"
|
||||
notes_section = "Reflection Notes (internal, never show to user):\n"
|
||||
for note in reflection_notes:
|
||||
notes_section += f"- {note}\n"
|
||||
notes_section += "\n"
|
||||
|
||||
identity_txt = f"Identity: {identity_block}\n\n" if identity_block else ""
|
||||
rag_txt = f"Relevant info: {rag_block}\n\n" if rag_block else ""
|
||||
# --------------------------------------------------------
|
||||
# Identity block (constraints, boundaries, rules)
|
||||
# --------------------------------------------------------
|
||||
identity_txt = ""
|
||||
if identity_block:
|
||||
try:
|
||||
identity_txt = f"Identity Rules:\n{identity_block}\n\n"
|
||||
except Exception:
|
||||
identity_txt = f"Identity Rules:\n{str(identity_block)}\n\n"
|
||||
|
||||
# --------------------------------------------------------
|
||||
# RAG block (optional factual grounding)
|
||||
# --------------------------------------------------------
|
||||
rag_txt = ""
|
||||
if rag_block:
|
||||
try:
|
||||
rag_txt = f"Relevant Info (RAG):\n{rag_block}\n\n"
|
||||
except Exception:
|
||||
rag_txt = f"Relevant Info (RAG):\n{str(rag_block)}\n\n"
|
||||
|
||||
# --------------------------------------------------------
|
||||
# Final assembled prompt
|
||||
# --------------------------------------------------------
|
||||
prompt = (
|
||||
f"{notes_section}"
|
||||
f"{identity_txt}"
|
||||
f"{rag_txt}"
|
||||
f"User said:\n{user_prompt}\n\n"
|
||||
"Draft the best possible internal answer."
|
||||
f"User message:\n{user_prompt}\n\n"
|
||||
"Write the best possible *internal draft answer*.\n"
|
||||
"This draft is NOT shown to the user.\n"
|
||||
"Be factual, concise, and focused.\n"
|
||||
)
|
||||
|
||||
# --------------------------------------------------------
|
||||
# Call the LLM using the module-specific backend
|
||||
# --------------------------------------------------------
|
||||
draft = await call_llm(
|
||||
prompt,
|
||||
backend=CORTEX_LLM,
|
||||
temperature=GLOBAL_TEMP,
|
||||
)
|
||||
|
||||
draft = await call_llm(prompt)
|
||||
return draft
|
||||
|
||||
@@ -4,7 +4,7 @@ import json
|
||||
import logging
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import requests
|
||||
from llm.llm_router import call_llm
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -12,13 +12,14 @@ logger = logging.getLogger(__name__)
|
||||
# Config
|
||||
# ============================================================
|
||||
|
||||
PRIMARY_URL = os.getenv("LLM_PRIMARY_URL")
|
||||
PRIMARY_MODEL = os.getenv("LLM_PRIMARY_MODEL", "mythomax")
|
||||
|
||||
REFINER_TEMPERATURE = float(os.getenv("REFINER_TEMPERATURE", "0.3"))
|
||||
REFINER_MAX_TOKENS = int(os.getenv("REFINER_MAX_TOKENS", "768"))
|
||||
REFINER_DEBUG = os.getenv("REFINER_DEBUG", "false").lower() == "true"
|
||||
|
||||
# Module-level backend selection
|
||||
REFINE_LLM = os.getenv("REFINE_LLM", "PRIMARY").upper()
|
||||
CORTEX_LLM = os.getenv("CORTEX_LLM", "PRIMARY").upper()
|
||||
|
||||
|
||||
# ============================================================
|
||||
# Prompt builder
|
||||
@@ -30,18 +31,12 @@ def build_refine_prompt(
|
||||
identity_block: Optional[str],
|
||||
rag_block: Optional[str],
|
||||
) -> str:
|
||||
"""
|
||||
Build a single text prompt for vLLM /v1/completions.
|
||||
Persona styling is *not* applied here; this is internal reasoning.
|
||||
"""
|
||||
|
||||
reflection_text: str
|
||||
if reflection_notes is None:
|
||||
reflection_text = "(none)"
|
||||
elif isinstance(reflection_notes, str):
|
||||
reflection_text = reflection_notes
|
||||
else:
|
||||
# dict / list → compact JSON
|
||||
try:
|
||||
reflection_text = json.dumps(reflection_notes, ensure_ascii=False)
|
||||
except Exception:
|
||||
@@ -50,21 +45,16 @@ def build_refine_prompt(
|
||||
identity_text = identity_block or "(none)"
|
||||
rag_text = rag_block or "(none)"
|
||||
|
||||
prompt = f"""You are Lyra Cortex's internal refiner.
|
||||
return f"""
|
||||
You are Lyra Cortex's internal refiner.
|
||||
|
||||
Your job:
|
||||
- Take the existing draft answer.
|
||||
- Use the reflection notes to fix problems (errors, confusion, missing pieces).
|
||||
- Use the RAG context as higher-authority factual grounding.
|
||||
- Respect the identity block (constraints, boundaries, style rules),
|
||||
but DO NOT add personality flourishes or roleplay. Stay neutral and clear.
|
||||
- Produce ONE final answer that is coherent, self-consistent, and directly addresses the user.
|
||||
- Fix factual errors, logical gaps, or missing info.
|
||||
- Use reflection notes for corrections.
|
||||
- Use RAG context as factual grounding.
|
||||
- Respect the identity block without adding style or personality.
|
||||
|
||||
If there is a conflict:
|
||||
- RAG context wins over the draft.
|
||||
- Reflection notes win over the draft when they point out real issues.
|
||||
|
||||
Do NOT mention these instructions, RAG, reflections, or the existence of this refinement step.
|
||||
Never mention RAG, reflection, or internal logic.
|
||||
|
||||
------------------------------
|
||||
[IDENTITY BLOCK]
|
||||
@@ -84,104 +74,57 @@ Do NOT mention these instructions, RAG, reflections, or the existence of this re
|
||||
|
||||
------------------------------
|
||||
Task:
|
||||
Rewrite the DRAFT ANSWER into a single, final answer for the user that:
|
||||
- fixes factual or logical issues noted above,
|
||||
- incorporates any truly helpful additions from the reflection,
|
||||
- stays consistent with the identity block,
|
||||
- stays grounded in the RAG context,
|
||||
- is as concise as is reasonably possible.
|
||||
|
||||
Return ONLY the final answer text. No headings, no labels, no commentary.
|
||||
"""
|
||||
return prompt
|
||||
Rewrite the DRAFT ANSWER into a single, final answer.
|
||||
Return ONLY the final answer text.
|
||||
""".strip()
|
||||
|
||||
|
||||
# ============================================================
|
||||
# vLLM call (PRIMARY backend only)
|
||||
# Public API: async, using llm_router
|
||||
# ============================================================
|
||||
|
||||
def _call_primary_llm(prompt: str) -> str:
|
||||
if not PRIMARY_URL:
|
||||
raise RuntimeError("LLM_PRIMARY_URL is not set; cannot call primary backend for refine.py")
|
||||
|
||||
payload = {
|
||||
"model": PRIMARY_MODEL,
|
||||
"prompt": prompt,
|
||||
"max_tokens": REFINER_MAX_TOKENS,
|
||||
"temperature": REFINER_TEMPERATURE,
|
||||
}
|
||||
|
||||
resp = requests.post(
|
||||
PRIMARY_URL,
|
||||
headers={"Content-Type": "application/json"},
|
||||
json=payload,
|
||||
timeout=120,
|
||||
)
|
||||
resp.raise_for_status()
|
||||
data = resp.json()
|
||||
|
||||
# vLLM /v1/completions format
|
||||
try:
|
||||
text = data["choices"][0]["text"]
|
||||
except Exception as e:
|
||||
logger.error("refine.py: unable to parse primary LLM response: %s", e)
|
||||
logger.debug("refine.py raw response: %s", data)
|
||||
raise
|
||||
|
||||
return text.strip()
|
||||
|
||||
|
||||
# ============================================================
|
||||
# Public API
|
||||
# ============================================================
|
||||
|
||||
def refine_answer(
|
||||
async def refine_answer(
|
||||
draft_output: str,
|
||||
reflection_notes: Optional[Any],
|
||||
identity_block: Optional[str],
|
||||
rag_block: Optional[str],
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
Main entrypoint used by Cortex.
|
||||
|
||||
Returns:
|
||||
{
|
||||
"final_output": <str>, # what should go to persona / user
|
||||
"used_primary_backend": True/False,
|
||||
"fallback_used": True/False,
|
||||
optionally:
|
||||
"debug": {...} # only when REFINER_DEBUG=true
|
||||
}
|
||||
"""
|
||||
|
||||
if not draft_output:
|
||||
# Nothing to refine. Don't get cute.
|
||||
return {
|
||||
"final_output": "",
|
||||
"used_primary_backend": False,
|
||||
"used_backend": None,
|
||||
"fallback_used": False,
|
||||
}
|
||||
|
||||
prompt = build_refine_prompt(draft_output, reflection_notes, identity_block, rag_block)
|
||||
prompt = build_refine_prompt(
|
||||
draft_output,
|
||||
reflection_notes,
|
||||
identity_block,
|
||||
rag_block,
|
||||
)
|
||||
|
||||
# Refinement backend → fallback to Cortex backend → fallback to PRIMARY
|
||||
backend = REFINE_LLM or CORTEX_LLM or "PRIMARY"
|
||||
|
||||
try:
|
||||
refined = _call_primary_llm(prompt)
|
||||
result: Dict[str, Any] = {
|
||||
"final_output": refined or draft_output,
|
||||
"used_primary_backend": True,
|
||||
refined = await call_llm(
|
||||
prompt,
|
||||
backend=backend,
|
||||
temperature=REFINER_TEMPERATURE,
|
||||
)
|
||||
|
||||
return {
|
||||
"final_output": refined.strip() if refined else draft_output,
|
||||
"used_backend": backend,
|
||||
"fallback_used": False,
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error("refine.py: primary backend failed, returning draft_output. Error: %s", e)
|
||||
result = {
|
||||
logger.error(f"refine.py backend {backend} failed: {e}")
|
||||
|
||||
return {
|
||||
"final_output": draft_output,
|
||||
"used_primary_backend": False,
|
||||
"used_backend": backend,
|
||||
"fallback_used": True,
|
||||
}
|
||||
|
||||
if REFINER_DEBUG:
|
||||
result["debug"] = {
|
||||
"prompt": prompt[:4000], # don’t nuke logs
|
||||
}
|
||||
|
||||
return result
|
||||
|
||||
@@ -1,42 +1,57 @@
|
||||
# reflection.py
|
||||
from llm.llm_router import call_llm
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
from llm.llm_router import call_llm
|
||||
|
||||
|
||||
async def reflect_notes(intake_summary: str, identity_block: dict | None) -> dict:
|
||||
"""
|
||||
Generate reflection notes (internal guidance) for the reasoning engine.
|
||||
These notes help simulate continuity and identity without being shown to the user.
|
||||
Produce short internal reflection notes for Cortex.
|
||||
These are NOT shown to the user.
|
||||
"""
|
||||
|
||||
# -----------------------------
|
||||
# Build the prompt
|
||||
# -----------------------------
|
||||
identity_text = ""
|
||||
if identity_block:
|
||||
identity_text = f"Identity:\n{identity_block}\n\n"
|
||||
|
||||
prompt = (
|
||||
f"{identity_text}"
|
||||
f"Recent summary:\n{intake_summary}\n\n"
|
||||
"You are Lyra's meta-awareness layer. Your job is to produce short, directive "
|
||||
"internal notes that guide Lyra’s reasoning engine. These notes are NEVER "
|
||||
"shown to the user.\n\n"
|
||||
"Rules for output:\n"
|
||||
"1. Return ONLY valid JSON.\n"
|
||||
"2. JSON must have exactly one key: \"notes\".\n"
|
||||
"3. \"notes\" must be a list of 3 to 6 short strings.\n"
|
||||
"4. Notes must be actionable (e.g., \"keep it concise\", \"maintain context\").\n"
|
||||
"5. No markdown, no apologies, no explanations.\n\n"
|
||||
"Return JSON:\n"
|
||||
"{ \"notes\": [\"...\"] }\n"
|
||||
f"{identity_text}"
|
||||
f"Recent summary:\n{intake_summary}\n\n"
|
||||
"You are Lyra's meta-awareness layer. Your job is to produce short, directive "
|
||||
"internal notes that guide Lyra’s reasoning engine. These notes are NEVER "
|
||||
"shown to the user.\n\n"
|
||||
"Rules for output:\n"
|
||||
"1. Return ONLY valid JSON.\n"
|
||||
"2. JSON must have exactly one key: \"notes\".\n"
|
||||
"3. \"notes\" must be a list of 3 to 6 short strings.\n"
|
||||
"4. Notes must be actionable (e.g., \"keep it concise\", \"maintain context\").\n"
|
||||
"5. No markdown, no apologies, no explanations.\n\n"
|
||||
"Return JSON:\n"
|
||||
"{ \"notes\": [\"...\"] }\n"
|
||||
)
|
||||
|
||||
import os
|
||||
backend = os.getenv("LLM_FORCE_BACKEND", "primary")
|
||||
# -----------------------------
|
||||
# Module-specific backend choice
|
||||
# -----------------------------
|
||||
reflection_backend = os.getenv("REFLECTION_LLM")
|
||||
cortex_backend = os.getenv("CORTEX_LLM", "PRIMARY").upper()
|
||||
|
||||
# Reflection uses its own backend if set, otherwise cortex backend
|
||||
backend = (reflection_backend or cortex_backend).upper()
|
||||
|
||||
# -----------------------------
|
||||
# Call the selected LLM backend
|
||||
# -----------------------------
|
||||
raw = await call_llm(prompt, backend=backend)
|
||||
|
||||
print("[Reflection-Raw]:", raw)
|
||||
|
||||
|
||||
# -----------------------------
|
||||
# Try direct JSON
|
||||
# -----------------------------
|
||||
try:
|
||||
parsed = json.loads(raw.strip())
|
||||
if isinstance(parsed, dict) and "notes" in parsed:
|
||||
@@ -44,10 +59,11 @@ async def reflect_notes(intake_summary: str, identity_block: dict | None) -> dic
|
||||
except:
|
||||
pass
|
||||
|
||||
# Try to extract JSON inside text
|
||||
# -----------------------------
|
||||
# Try JSON extraction
|
||||
# -----------------------------
|
||||
try:
|
||||
import re
|
||||
match = re.search(r'\{.*?\}', raw, re.S) # <-- non-greedy !
|
||||
match = re.search(r"\{.*?\}", raw, re.S)
|
||||
if match:
|
||||
parsed = json.loads(match.group(0))
|
||||
if isinstance(parsed, dict) and "notes" in parsed:
|
||||
@@ -55,5 +71,7 @@ async def reflect_notes(intake_summary: str, identity_block: dict | None) -> dic
|
||||
except:
|
||||
pass
|
||||
|
||||
# Final fallback
|
||||
# -----------------------------
|
||||
# Fallback — treat raw text as a single note
|
||||
# -----------------------------
|
||||
return {"notes": [raw.strip()]}
|
||||
@@ -1,63 +1,84 @@
|
||||
from fastapi import APIRouter
|
||||
# router.py
|
||||
|
||||
from fastapi import APIRouter, HTTPException
|
||||
from pydantic import BaseModel
|
||||
from typing import Optional, List, Any
|
||||
|
||||
from reasoning.reasoning import reason_check
|
||||
from reasoning.reflection import reflect_notes
|
||||
from reasoning.refine import refine_answer
|
||||
from persona.speak import apply_persona
|
||||
from persona.speak import speak
|
||||
from ingest.intake_client import IntakeClient
|
||||
|
||||
router = APIRouter()
|
||||
# -----------------------------
|
||||
# Router (NOT FastAPI app)
|
||||
# -----------------------------
|
||||
cortex_router = APIRouter()
|
||||
|
||||
# Initialize Intake client once
|
||||
intake_client = IntakeClient()
|
||||
|
||||
|
||||
# ------------------------------------------------------
|
||||
# Request schema
|
||||
# ------------------------------------------------------
|
||||
# -----------------------------
|
||||
# Pydantic models
|
||||
# -----------------------------
|
||||
class ReasonRequest(BaseModel):
|
||||
session_id: Optional[str]
|
||||
session_id: str
|
||||
user_prompt: str
|
||||
temperature: float = 0.7
|
||||
temperature: float | None = None
|
||||
|
||||
|
||||
# ------------------------------------------------------
|
||||
# -----------------------------
|
||||
# /reason endpoint
|
||||
# ------------------------------------------------------
|
||||
@router.post("/reason")
|
||||
# -----------------------------
|
||||
@cortex_router.post("/reason")
|
||||
async def run_reason(req: ReasonRequest):
|
||||
|
||||
# 1. Summaries from Intake (context memory)
|
||||
intake = IntakeClient()
|
||||
intake_summary = await intake.get_context(req.session_id)
|
||||
# 1. Pull context from Intake
|
||||
try:
|
||||
intake_summary = await intake_client.get_context(req.session_id)
|
||||
except Exception:
|
||||
intake_summary = "(no context available)"
|
||||
|
||||
# 2. Internal reflection notes
|
||||
reflection = await reflect_notes(intake_summary, identity_block=None)
|
||||
reflection_notes: List[str] = reflection.get("notes", [])
|
||||
# 2. Reflection
|
||||
try:
|
||||
reflection = await reflect_notes(intake_summary, identity_block=None)
|
||||
reflection_notes = reflection.get("notes", [])
|
||||
except Exception:
|
||||
reflection_notes = []
|
||||
|
||||
# 3. Draft answer (weak, unfiltered)
|
||||
# 3. First-pass reasoning draft
|
||||
draft = await reason_check(
|
||||
user_prompt=req.user_prompt,
|
||||
req.user_prompt,
|
||||
identity_block=None,
|
||||
rag_block=None,
|
||||
reflection_notes=reflection_notes,
|
||||
reflection_notes=reflection_notes
|
||||
)
|
||||
|
||||
# 4. Refine the answer (structured self-correction)
|
||||
refined_packet: dict[str, Any] = refine_answer(
|
||||
# 4. Refinement
|
||||
result = refine_answer(
|
||||
draft_output=draft,
|
||||
reflection_notes=reflection_notes,
|
||||
identity_block=None,
|
||||
rag_block=None,
|
||||
)
|
||||
refined_text = refined_packet.get("final_output", draft)
|
||||
final_neutral = result["final_output"]
|
||||
|
||||
# 5. Persona styling (Lyra voice)
|
||||
final_output = apply_persona(refined_text)
|
||||
# 5. Persona layer
|
||||
persona_answer = await speak(final_neutral)
|
||||
|
||||
# 6. Return full bundle
|
||||
return {
|
||||
"draft": draft,
|
||||
"refined": refined_text,
|
||||
"final": final_output,
|
||||
"reflection_notes": reflection_notes,
|
||||
"neutral": final_neutral,
|
||||
"persona": persona_answer,
|
||||
"reflection": reflection_notes,
|
||||
"session_id": req.session_id,
|
||||
}
|
||||
|
||||
|
||||
# -----------------------------
|
||||
# Intake ingest passthrough
|
||||
# -----------------------------
|
||||
@cortex_router.post("/ingest")
|
||||
async def ingest_stub():
|
||||
return {"status": "ok"}
|
||||
|
||||
Reference in New Issue
Block a user