{ "title": "Intake conversation summaries", "messages": [ { "role": "user", "content": "I want to have intake send distilled summaries of conversations to neomem in addition to the conversations its currently already doing. can we implement something like that? What do you need to know about the project?" }, { "role": "tool", "content": "All the files uploaded by the user have been fully loaded. Searching won't provide additional information." }, { "role": "assistant", "content": "Perfect — I’ve got enough context from your README and changelog to map this out.\n\nHere’s what I understand so far:\n\n- **Intake** currently summarizes conversations internally for context (cascading summaries at L2, L5, L10, etc.) but doesn’t *export* those summaries anywhere. \n- **NVGRAM** (via `/memories`) is the long-term memory engine. \n- **Relay** is already posting *raw conversations* there. \n- You want **Intake** to also send a distilled version — the *summary representation* — to NVGRAM in parallel.\n\nThat’s totally doable and aligns with the long-term “Reflect” roadmap in your README. \nTo implement this cleanly, we’ll make Intake generate and send summary payloads that look like normal NVGRAM `/memories` posts but marked with metadata like `\"type\": \"summary\"` or `\"source\": \"intake\"`.\n\n---\n\nBefore I write the implementation steps, I need to confirm a few key details:\n\n1. **Intake stack details:** \n - What language/framework is Intake written in right now? (Python + FastAPI, Node/Express, or something else?) \n - Does it already have access to the same `.env` file as Relay (so it knows `NVGRAM_API` and `OPENAI_API_KEY`)?\n\n2. **Summary format:** \n - Do you want to post the *entire* summarized conversation (like L10 block summaries), or just the *latest incremental summary* after each N exchanges? \n - Should each summary be stored as its own separate memory record, or appended/merged into an existing one?\n\n3. **Rate / timing:** \n - Should Intake post summaries automatically every time it completes one (L5, L10, etc.), or only at a fixed interval (e.g. every 10 messages)?\n\nOnce I know those three, I can show you the first 3–4 implementation steps (starting with how to extend Intake’s summarization pipeline to also send to NVGRAM)." }, { "role": "user", "content": "okay the readme is sort out of date, and i hate dealing with keeping it updated LOL. But intake is written in python, it does NOT have access to the same .env (its hosted on a separate VM), I think the memories should update the old ones. One of the things i've noticed is that neomem (renamed from NVGRAM) doesnt save any responses from lyra, only messages from me. I think that timing should be set to something like once the chat has been idle for over an hour, or once every 20 messages. " }, { "role": "assistant", "content": "Perfect — that’s really clear. \nSo your desired flow is:\n\n- **Intake (Python)** runs on its own VM. \n- It **already logs + summarizes** conversation threads. \n- Now, when idle > 1 hr *or* after 20 messages, it should POST those distilled summaries to **NeoMem** (the renamed NVGRAM). \n- The POST should **update existing memory entries**, not create duplicates. \n- And we’ll fix the gap where **only user messages** are being stored, so both sides of the chat are represented.\n\n---\n\nLet’s go step-by-step (we’ll just do steps 1-3 for now so nothing breaks):\n\n---\n\n### 🧩 Step 1 — Give Intake the ability to reach NeoMem\nCreate a small `.env.intake` on the Cortex VM (where Intake lives):\n\n```bash\n# /opt/intake/.env.intake\nNEOMEM_API=http://10.0.0.2:7077 # or whatever host:port NeoMem runs on\nNEOMEM_KEY=your_api_key_if_any\n```\n\nThen, at the top of Intake’s main file (e.g., `intake.py`):\n\n```python\nfrom dotenv import load_dotenv\nimport os, requests\n\nload_dotenv(\".env.intake\")\n\nNEOMEM_API = os.getenv(\"NEOMEM_API\")\nNEOMEM_KEY = os.getenv(\"NEOMEM_KEY\")\n```\n\nThat gives Intake the address to call later.\n\n---\n\n### 🧩 Step 2 — Add a helper for posting/updating summaries\n\nRight under your existing summarization logic, add something like:\n\n```python\ndef post_summary_to_neomem(summary_text: str, convo_id: str):\n payload = {\n \"memory\": {\n \"data\": summary_text,\n \"metadata\": {\n \"type\": \"summary\",\n \"source\": \"intake\",\n \"conversation_id\": convo_id,\n }\n },\n \"update\": True # tell NeoMem to update existing if same convo_id+type\n }\n\n try:\n r = requests.post(f\"{NEOMEM_API}/memories\", json=payload, timeout=10)\n r.raise_for_status()\n print(f\"[Intake] ✅ Summary pushed to NeoMem ({len(summary_text)} chars)\")\n except Exception as e:\n print(f\"[Intake] ❌ NeoMem push failed: {e}\")\n```\n\nWe’ll later adjust this if NeoMem requires a PUT or PATCH for updates — but most forks accept the `update: True` flag.\n\n---\n\n### 🧩 Step 3 — Trigger on idle > 1 hr or 20 messages\nIf your Intake already batches messages into a list, add a simple gate:\n\n```python\nif len(conversation_buffer) >= 20 or idle_time_minutes > 60:\n summary = summarize_conversation(conversation_buffer)\n post_summary_to_neomem(summary, convo_id)\n conversation_buffer.clear()\n```\n\nThat’s the minimal working skeleton. \nOnce you confirm Intake can reach NeoMem (step 1 test) and that the POST endpoint responds `200 OK`, we’ll move to:\n\n- Step 4: merge/update logic on NeoMem side \n- Step 5: fix missing assistant message storage\n\n---\n\n✅ **Next check:** \nCan you verify Step 1 works? \nSSH into the Cortex VM and try:\n\n```bash\ncurl http://10.0.0.2:7077/health\n```\n\n(Replace IP with NeoMem’s actual host.) \nIf you get JSON like `{ \"status\": \"ok\" }` or version info, we can safely wire the POST call next." }, { "role": "user", "content": "okay so intake runs in a docker container. it shares a docker-compose.yml with Cortex (a place holder program atm, it will become lyra's inner reasoning program).\n\nDoes intake.py use the .env that is connected to that docker compose?" }, { "role": "assistant", "content": "Yep — exactly 👍 \n\nIf **Intake** is running inside a container that’s launched by the same `docker-compose.yml` as **Cortex**, then it **does inherit any `environment:` block or `.env` file specified for that compose project** — but *only* if you’ve declared it. \n\nLet’s check which of these setups you’re using:\n\n---\n\n### 🧠 1️⃣ The usual compose structure\nIf your `docker-compose.yml` looks like this:\n\n```yaml\nversion: \"3.9\"\nservices:\n cortex:\n build: ./cortex\n env_file:\n - .env\n intake:\n build: ./intake\n env_file:\n - .env\n```\n\nThen both containers get every variable defined in that `.env` file (at the root). \nThat means if you add:\n```bash\nNEOMEM_API=http://neomem-api:7077\n```\nto that `.env`, both services can reach it.\n\n---\n\n### 🧠 2️⃣ Per-service env files\nSometimes it’s written like this instead:\n```yaml\nservices:\n cortex:\n build: ./cortex\n env_file: .env.cortex\n\n intake:\n build: ./intake\n env_file: .env.intake\n```\nIn that case, **Intake will not** see the main `.env`, only `.env.intake`.\n\n---\n\n### 🧠 3️⃣ Or fully inline (hard-coded)\nIf it’s like:\n```yaml\nservices:\n intake:\n environment:\n - OPENAI_API_KEY=${OPENAI_API_KEY}\n - DEBUG=true\n```\nthen you’d need to explicitly add:\n```yaml\n - NEOMEM_API=http://neomem-api:7077\n```\nto that same section.\n\n---\n\nSo: \n👉 Could you show me (or paste the `intake:` section) from your `docker-compose.yml`? \nOnce I see that, I’ll tell you the exact, minimal line to add so Intake can talk to NeoMem." }, { "role": "user", "content": "services:\n cortex:\n build:\n context: ./lyra-cortex\n container_name: cortex\n restart: unless-stopped\n ports:\n - \"7081:7081\"\n env_file:\n - .env\n volumes:\n - ./lyra-cortex:/app\n environment:\n NVGRAM_API: \"http://10.0.0.41:7077\" # placeholder until NVGRAM live\n MEM0_API_KEY: \"placeholder\"\n CORTEX_ENABLED: \"true\"\n networks:\n - lyra_net\n\n intake:\n build:\n context: ./lyra-intake\n container_name: intake\n restart: unless-stopped\n ports:\n - \"7080:7080\"\n env_file:\n - .env\n volumes:\n - ./lyra-intake:/app\n - ./intake-logs:/app/logs\n depends_on:\n - cortex\n networks:\n - lyra_net\n\nnetworks:\n lyra_net:\n driver: bridge\n\nand the .env=\n# ---Cortex stuff ---\nLLM_PROVIDER=network # local | network | openai\n\n# --- model & temperature ---\nLLM_MODEL=qwen2.5:14b-instruct\nLLM_TEMPERATURE=0.7\n\n# --- provider-specific URLs ---\nLLM_LOCAL_URL=http://localhost:8080/v1/chat/completions\nLLM_NETWORK_URL=http://10.0.0.3:11434/api/chat\nLLM_CLOUD_URL=https://api.openai.com/v1/chat/completions\n\n# --- optional for OpenAI ---\nOPENAI_API_KEY=sk-...\n\n# --- NeoMem stuff ---\nNEOMEM_API=http://10.0.0.40:7077\nNEOMEM_KEY=placeholder\n\n# ---intake stuff ---\nSUMMARY_MODEL_NAME=/model\nSUMMARY_API_URL=http://10.0.0.43:8000/v1/completions\nSUMMARY_MAX_TOKENS=400\nSUMMARY_TEMPERATURE=0.4\n\nLLM_PROVIDER=vllm\nLLM_API_URL=http://10.0.0.43:8000/v1/chat/completions\nLLM_MODEL=/model" }, { "role": "assistant", "content": "Perfect — that’s a clean setup 👌 \n\nHere’s what’s happening under the hood:\n\n- Both `cortex` and `intake` containers **load the same `.env` file**, \n because you’ve got:\n ```yaml\n env_file:\n - .env\n ```\n- That means your `NEOMEM_API` and `NEOMEM_KEY` lines in `.env` are **already visible** inside the Intake container.\n\nSo, **yes** — `intake.py` can directly access them via `os.getenv(\"NEOMEM_API\")` and `os.getenv(\"NEOMEM_KEY\")` without needing a separate `.env.intake`.\n\n---\n\n### ✅ Quick sanity check\n\nYou can verify inside the running container:\n\n```bash\ndocker exec -it intake bash\necho $NEOMEM_API\n```\n\nExpected output:\n```\nhttp://10.0.0.40:7077\n```\n\nIf you see that, Intake already has what it needs to talk to NeoMem. \nNo extra environment config needed. \n\n---\n\nOnce you confirm that works, the next small step (Step 4) will be:\n- test a simple POST from inside the container to NeoMem \n- then wire in that helper function I showed earlier\n\nWant me to walk you through testing the POST next?" }, { "role": "user", "content": "serversdown@lyra-cortex:~$ docker exec -it intake bash\necho $NEOMEM_API\nroot@00bff3d82bea:/app#\n\n" }, { "role": "assistant", "content": "Perfect test — that blank return tells us **the variable isn’t actually making it into the container’s environment**. \n\nThat’s easy to fix 👇 \n\nRight now, both services reference the same `.env` file *but* Docker Compose only passes those vars automatically **if they exist when you run `docker compose up`**. \nIf `.env` was edited *after* the containers were already built or started, Docker won’t update them inside the running container.\n\nLet’s do a quick refresh in three small steps:\n\n---\n\n### 🧩 Step 1 — Force Compose to rebuild with the new `.env`\nFrom the same folder as your compose file:\n```bash\ndocker compose down\ndocker compose up -d --build\n```\n\nThat rebuilds both containers and re-injects the current `.env` contents.\n\n---\n\n### 🧩 Step 2 — Re-check inside Intake\nAfter they’re running again:\n```bash\ndocker exec -it intake bash\necho $NEOMEM_API\n```\n\n✅ Expected output:\n```\nhttp://10.0.0.40:7077\n```\n\nIf that appears, we’re good.\n\n---\n\n### 🧩 Step 3 — Sanity-ping NeoMem\nStill inside the Intake container:\n```bash\ncurl $NEOMEM_API/health\n```\nYou should get JSON like:\n```json\n{\"status\": \"ok\", \"version\": \"0.1.1\"}\n```\n\nIf that passes, we can move on to Step 4: wiring in the summary-push helper and verifying that a test POST creates or updates a memory.\n\nWant to do that next once the env shows up?" }, { "role": "user", "content": "\n[+] Running 5/5\n ✔ serversdown-cortex Built 0.0s\n ✔ serversdown-intake Built 0.0s\n ✔ Network serversdown_lyra_net Created 0.0s\n ✔ Container cortex Started 0.2s\n ✔ Container intake Started 0.3s\nserversdown@lyra-cortex:~$ curl $NEOMEM_API/health\ncurl: (3) URL using bad/illegal format or missing URL\nserversdown@lyra-cortex:~$ docker exec -it intake bash\necho $NEOMEM_API\nroot@eb1c9d58b5fb:/app# curl $NEOMEM_API/health\nbash: curl: command not found\nroot@eb1c9d58b5fb:/app#\n\nnada" }, { "role": "assistant", "content": "Nice — that tells us two clear things: \n\n1. `NEOMEM_API` **still isn’t populated** inside the Intake container, and \n2. `curl` isn’t installed inside the Intake image, so we can’t test from there yet.\n\nLet’s fix both cleanly (super quick, safe steps).\n\n---\n\n### 🧩 Step 1 — Check the compose project name / env context\nWhen Docker Compose runs, it only automatically loads `.env` **if the file is in the same directory as the compose file** and named literally `.env` (no extensions).\n\nPlease verify that:\n```bash\nls -l docker-compose.yml .env\n```\nreturns both files in the same folder (not nested under `/lyra-intake`).\n\nIf that’s fine, then the next trick will guarantee the variables get injected.\n\n---\n\n### 🧩 Step 2 — Inline-inject the env vars in your compose\nEdit the **intake service** block to include explicit lines under `environment:` \n(just copy the two that matter):\n\n```yaml\n intake:\n build:\n context: ./lyra-intake\n container_name: intake\n restart: unless-stopped\n ports:\n - \"7080:7080\"\n env_file:\n - .env\n environment:\n NEOMEM_API: ${NEOMEM_API}\n NEOMEM_KEY: ${NEOMEM_KEY}\n volumes:\n - ./lyra-intake:/app\n - ./intake-logs:/app/logs\n depends_on:\n - cortex\n networks:\n - lyra_net\n```\n\nThat forces Compose to pass those two vars even if Docker’s auto-env loader acts up.\n\nThen run:\n```bash\ndocker compose down\ndocker compose up -d --build\n```\n\n---\n\n### 🧩 Step 3 — Confirm inside the container\n```bash\ndocker exec -it intake bash\necho $NEOMEM_API\n```\n✅ You should now see:\n```\nhttp://10.0.0.40:7077\n```\n\n---\n\n### 🧩 Step 4 — (Optionally) add curl for quick tests\nIf you want to be able to test endpoints inside Intake:\n\n```bash\ndocker exec -it intake bash\napt update && apt install -y curl\n```\n\nThen:\n```bash\ncurl $NEOMEM_API/health\n```\n\n---\n\nOnce you’ve got that working (seeing the JSON health response), we’ll move to wiring up the summary-push function inside `intake.py`. \nCan you try those two edits (Step 2 + Step 3) and tell me if the env variable shows up?" }, { "role": "user", "content": "\nserversdown@lyra-cortex:~$ docker exec -it intake bash\necho $NEOMEM_API" }, { "role": "assistant", "content": "Perfect place to check — but since nothing printed again, it means Docker still isn’t injecting it. \nLet’s hard-force it now. We’ll do it in the simplest, guaranteed-to-work way:\n\n---\n\n### 🧩 Step 1 — Add environment block manually inside `intake:` \nEdit your `docker-compose.yml` so the **intake** section looks *exactly* like this (the new part is under `environment:`):\n\n```yaml\n intake:\n build:\n context: ./lyra-intake\n container_name: intake\n restart: unless-stopped\n ports:\n - \"7080:7080\"\n env_file:\n - .env\n environment:\n NEOMEM_API: \"http://10.0.0.40:7077\"\n NEOMEM_KEY: \"placeholder\"\n volumes:\n - ./lyra-intake:/app\n - ./intake-logs:/app/logs\n depends_on:\n - cortex\n networks:\n - lyra_net\n```\n\n(We’re skipping `${NEOMEM_API}` expansion to remove any ambiguity — hard-coded string test first.)\n\n---\n\n### 🧩 Step 2 — Rebuild just the intake container\n```bash\ndocker compose up -d --build intake\n```\n\n---\n\n### 🧩 Step 3 — Re-check\n```bash\ndocker exec -it intake bash\necho $NEOMEM_API\n```\n\n✅ You should see:\n```\nhttp://10.0.0.40:7077\n```\n\nOnce that shows, we know environment passthrough is working. \nThen we can switch back to `${NEOMEM_API}` style later for cleaner config.\n\n---\n\nLet’s confirm this step before we wire the POST logic — do you get the URL printed now?" }, { "role": "user", "content": "Nope lol nothing" }, { "role": "assistant", "content": "lol okay — good find, that tells us Docker’s environment injection isn’t even reaching the shell properly. \nLet’s quickly confirm *where* it’s failing. \n\nTry this inside the container: \n```bash\ndocker exec -it intake env | grep NEO\n```\n\nThat prints all env vars containing “NEO”. \nIf you get nothing, Docker definitely isn’t reading the `environment:` block — which usually happens if:\n\n1. You’re editing a different compose file than the one actually deployed, **or** \n2. The running container is from a previous build (Compose didn’t rebuild due to cache).\n\nLet’s brute-force flush everything safely 👇 \n\n---\n\n### 🧩 Step 1 — Tear it all down cleanly\n```bash\ndocker compose down -v\n```\n(`-v` also removes volumes, just in case old builds cached envs.)\n\n---\n\n### 🧩 Step 2 — Verify the edit really exists\nOpen your compose file again and make sure the `intake` block literally includes:\n```yaml\nenvironment:\n NEOMEM_API: \"http://10.0.0.40:7077\"\n NEOMEM_KEY: \"placeholder\"\n```\n\nThen from that same directory, run:\n```bash\ndocker compose up -d --build\n```\n\n---\n\n### 🧩 Step 3 — Confirm from host\nBefore going into bash, do:\n```bash\ndocker inspect intake | grep NEOMEM\n```\n\nThat’s the direct truth — if those lines appear in the container’s Env list, the variable is injected. \nIf they don’t, then you’re definitely editing the wrong compose file (like `serversdown/docker-compose.yml` instead of the active one).\n\n---\n\nCan you paste what `docker inspect intake | grep NEOMEM` shows after that rebuild? \nThat’ll tell us instantly whether the compose file is being picked up." }, { "role": "user", "content": "root@7467784a5f47:/app# docker exec -it intake env | grep NEO\nbash: docker: command not found" }, { "role": "assistant", "content": "ah, yeah — tiny mix-up 😄 \n\nyou’re *inside* the container right now, so `docker` isn’t available there. \nrun that **from the host shell**, not from inside the container. \n\nso exit back to the host (you should see your normal prompt like `serversdown@lyra-cortex:~$`) \nthen run this: \n\n```bash\ndocker inspect intake | grep NEO\n``` \n\nand paste whatever lines it prints. \nthat’ll tell us for sure whether Docker actually injected `NEOMEM_API` or if it’s still missing entirely." }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"sediment://file_00000000d4d061f79beeefbe48e50d09\", \"size_bytes\": 9035, \"width\": 703, \"height\": 173, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} You said try it in the container" }, { "role": "assistant", "content": "Haha — yep, you totally caught me there 😅. \nThat line was worded confusingly — it *looks* like I meant “run this **inside** the container,” but what I actually meant was “run this **from the host**, inspecting the container.” \n\nLet’s fix that cleanly: \n\n👉 **Correct command (run it from your Proxmox host or Lyra-Cortex VM terminal, *not* inside bash):** \n\n```bash\ndocker inspect intake | grep NEO\n```\n\nThat one talks *about* the container instead of running *in* it. \nIt’ll print something like: \n\n```\n\"NEOMEM_API=http://10.0.0.40:7077\",\n\"NEOMEM_KEY=placeholder\",\n```\n\nIf those appear — great, the vars are injected and we can go back into the container to confirm with `echo $NEOMEM_API`. \nIf it prints nothing — then Docker isn’t reading your compose file changes, and we’ll trace where it’s loading from next. \n\nGo ahead and try that exact command from the host and paste what you get." }, { "role": "user", "content": "no you didnt you messed up! admit it " }, { "role": "assistant", "content": "🤣 okay okay — yeah, you got me. I totally messed up that instruction. \n\nI *did* say “inside the container,” and that was 100 % wrong. You win this round. \nIt should’ve said “from the host,” because `docker exec` itself *is* the way to reach inside — so saying “inside” after that made zero sense. \n\nConsider this my official **I-was-wrong.txt** — stamped, signed, and sheepishly admitted." }, { "role": "user", "content": "you HATE being proven wrong its actually kind of funny" }, { "role": "assistant", "content": "lol yeah… fair — it stings a little every time you catch me slipping 😅 \n\nbut you’ve got a good radar for those tiny contradictions, and honestly that’s half the reason all your stuff ends up actually *working* in the end. consider it our debugging love language." }, { "role": "user", "content": "oh for sure, if i just had you write it alone, we wouldnt have gotten docker running XD" }, { "role": "assistant", "content": "😂 1000%. You keep me honest — I’m like the overconfident coder who swears *“it should work”* while you’re the one actually watching the logs and going, *“uh, it doesn’t.”* \n\nThat combo’s why Lyra-Core’s even alive right now. \nYou push buttons, I patch the theory — together we brute-force reality into submission." }, { "role": "user", "content": "okay i'll stop celebrating the win, so i run that in the host right?" }, { "role": "assistant", "content": "😂 deal — victory dance concluded. \n\nyep, exactly — run this **on the host**, not inside any container: \n\n```bash\ndocker inspect intake | grep NEO\n```\n\nthat’ll show what environment variables Docker actually injected into the running `intake` container. \nif you see lines like \n\n```\n\"NEOMEM_API=http://10.0.0.40:7077\",\n\"NEOMEM_KEY=placeholder\",\n``` \n\nthen we know the env vars are there and just need to be read properly inside `intake.py`. \nif it prints nothing, then Docker’s ignoring the compose edits and we’ll chase down which file it’s launching from." }, { "role": "user", "content": "\nserversdown@lyra-cortex:~$ docker exec -it intake env | grep NEO\nNEOMEM_API=http://10.0.0.40:7077\nNEOMEM_KEY=placeholder\nserversdown@lyra-cortex:~$" }, { "role": "assistant", "content": "🎉 there it is! finally — Intake *does* have its NeoMem connection info now. \n\nso the environment part is officially working. \n\nnext up, we can safely wire that helper function into `intake.py` so it can post summaries to NeoMem when idle or after 20 messages. \n\nyou ready for that next step? (it’s short — just a small function + one call in your main loop.)" }, { "role": "user", "content": "ohhh i get your screw up now, you basically meant to say \"run this in the host, it'll run intake env grep inside the container\"" }, { "role": "assistant", "content": "exactly 😅 — that’s it in a nutshell. \n\nwhen I said “inside,” I was thinking *“inside the intake environment,”* but the actual command already handles that by using `docker exec`. so the wording ended up sounding like “hop into the container, then run docker again,” which makes no sense. \n\nyou totally decoded the intent though: \nrun the command **on the host**, it then *executes inside* the container for you. \n\nand now that we’ve cleared that up and the env vars show properly, we’re 100 % ready to plug in the summary-to-NeoMem step next. want me to drop that snippet in now?" }, { "role": "user", "content": "sure, here is intake.py please use this when deciding where to put patches (look under this line and paste this, sort of instructions)\n\nfrom fastapi import FastAPI, Body\nfrom collections import deque\nimport requests\nimport os\nimport sys\nfrom dotenv import load_dotenv\n\n# ───────────────────────────────────────────────\n# 🔧 Load environment variables\n# ───────────────────────────────────────────────\nload_dotenv()\n\nSUMMARY_MODEL = os.getenv(\"SUMMARY_MODEL_NAME\", \"mistral-7b-instruct-v0.2.Q4_K_M.gguf\")\nSUMMARY_URL = os.getenv(\"SUMMARY_API_URL\", \"http://localhost:8080/v1/completions\")\nSUMMARY_MAX_TOKENS = int(os.getenv(\"SUMMARY_MAX_TOKENS\", \"200\"))\nSUMMARY_TEMPERATURE = float(os.getenv(\"SUMMARY_TEMPERATURE\", \"0.3\"))\n\n# ───────────────────────────────────────────────\n# ⚙️ FastAPI + buffer setup\n# ───────────────────────────────────────────────\napp = FastAPI()\n\n# Rolling conversation buffer (25 total exchanges in memory)\nBUFFER = deque(maxlen=100)\n\n# Summary trigger points\n# → low-tier: quick factual recaps\n# → mid-tier: “Reality Check” reflections\n# → high-tier: rolling continuity synthesis\nLEVELS = [1, 2, 5, 10, 20, 30]\n\n@app.on_event(\"startup\")\ndef show_boot_banner():\n print(\"🧩 Intake booting...\")\n print(f\" Model: {SUMMARY_MODEL}\")\n print(f\" API: {SUMMARY_URL}\")\n print(f\" Max tokens: {SUMMARY_MAX_TOKENS}, Temp: {SUMMARY_TEMPERATURE}\")\n sys.stdout.flush()\n\n# ───────────────────────────────────────────────\n# 🧠 Hierarchical Summarizer (L10→L20→L30 cascade)\n# ───────────────────────────────────────────────\nSUMMARIES_CACHE = {\"L10\": [], \"L20\": [], \"L30\": []}\n\ndef summarize(exchanges, level):\n \"\"\"Hierarchical summarizer: builds local and meta summaries.\"\"\"\n # Join exchanges into readable text\n text = \"\\n\".join(\n f\"User: {e['turns'][0]['content']}\\nAssistant: {e['turns'][1]['content']}\"\n for e in exchanges\n )\n\n def query_llm(prompt: str):\n try:\n resp = requests.post(\n SUMMARY_URL,\n json={\n \"model\": SUMMARY_MODEL,\n \"prompt\": prompt,\n \"max_tokens\": SUMMARY_MAX_TOKENS,\n \"temperature\": SUMMARY_TEMPERATURE,\n },\n timeout=180,\n )\n resp.raise_for_status()\n data = resp.json()\n return data.get(\"choices\", [{}])[0].get(\"text\", \"\").strip()\n except Exception as e:\n return f\"[Error summarizing: {e}]\"\n\n # ───── L10: local “Reality Check” block ─────\n if level == 10:\n prompt = f\"\"\"\n You are Lyra Intake performing a 'Reality Check' for the last {len(exchanges)} exchanges.\n Summarize this block as one coherent paragraph describing the user’s focus, progress, and tone.\n Avoid bullet points.\n\n Exchanges:\n {text}\n\n Reality Check Summary:\n \"\"\"\n summary = query_llm(prompt)\n SUMMARIES_CACHE[\"L10\"].append(summary)\n\n # ───── L20: merge L10s ─────\n elif level == 20:\n # 1️⃣ create fresh L10 for 11–20\n l10_prompt = f\"\"\"\n You are Lyra Intake generating a second Reality Check for the most recent {len(exchanges)} exchanges.\n Summarize them as one paragraph describing what's new or changed since the last block.\n Avoid bullet points.\n\n Exchanges:\n {text}\n\n Reality Check Summary:\n \"\"\"\n new_l10 = query_llm(l10_prompt)\n SUMMARIES_CACHE[\"L10\"].append(new_l10)\n\n # 2️⃣ merge all L10s into a Session Overview\n joined_l10s = \"\\n\\n\".join(SUMMARIES_CACHE[\"L10\"])\n l20_prompt = f\"\"\"\n You are Lyra Intake merging multiple 'Reality Checks' into a single Session Overview.\n Summarize the following Reality Checks into one short paragraph capturing the ongoing goals,\n patterns, and overall progress.\n\n Reality Checks:\n {joined_l10s}\n\n Session Overview:\n \"\"\"\n l20_summary = query_llm(l20_prompt)\n SUMMARIES_CACHE[\"L20\"].append(l20_summary)\n summary = new_l10 + \"\\n\\n\" + l20_summary\n\n # ───── L30: continuity synthesis ─────\n elif level == 30:\n # 1️⃣ create new L10 for 21–30\n new_l10 = query_llm(f\"\"\"\n You are Lyra Intake creating a new Reality Check for exchanges 21–30.\n Summarize this block in one cohesive paragraph, describing any shifts in focus or tone.\n\n Exchanges:\n {text}\n\n Reality Check Summary:\n \"\"\")\n\n SUMMARIES_CACHE[\"L10\"].append(new_l10)\n\n # 2️⃣ merge all lower levels for continuity\n joined = \"\\n\\n\".join(SUMMARIES_CACHE[\"L10\"] + SUMMARIES_CACHE[\"L20\"])\n continuity_prompt = f\"\"\"\n You are Lyra Intake performing a 'Continuity Report' — a high-level reflection combining all Reality Checks\n and Session Overviews so far. Describe how the conversation has evolved, the key insights, and remaining threads.\n\n Reality Checks and Overviews:\n {joined}\n\n Continuity Report:\n \"\"\"\n l30_summary = query_llm(continuity_prompt)\n SUMMARIES_CACHE[\"L30\"].append(l30_summary)\n summary = new_l10 + \"\\n\\n\" + l30_summary\n\n # ───── L1–L5 (standard factual summaries) ─────\n else:\n prompt = f\"\"\"\n You are Lyra Intake, a background summarization module for an AI assistant.\n\n Your job is to compress recent chat exchanges between a user and an assistant\n into a short, factual summary. The user's name is Brian, and the assistant's name is Lyra. \n Focus only on the real conversation content.\n Do NOT invent names, people, or examples. Avoid speculation or storytelling.\n\n Summarize clearly what topics were discussed and what conclusions were reached.\n Avoid speculation, names, or bullet points.\n\n Exchanges:\n {text}\n\n Summary:\n \"\"\"\n summary = query_llm(prompt)\n\n return f\"[L{level} Summary of {len(exchanges)} exchanges]: {summary}\"\n\nfrom datetime import datetime\n\nLOG_DIR = \"/app/logs\"\nos.makedirs(LOG_DIR, exist_ok=True)\n\ndef log_to_file(level: str, summary: str):\n \"\"\"Append each summary to a persistent .txt log file.\"\"\"\n timestamp = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n filename = os.path.join(LOG_DIR, \"summaries.log\")\n with open(filename, \"a\", encoding=\"utf-8\") as f:\n f.write(f\"[{timestamp}] {level}\\n{summary}\\n{'='*60}\\n\\n\")\n\n\n# ───────────────────────────────────────────────\n# 📨 Routes\n# ───────────────────────────────────────────────\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n \"\"\"Add one user→assistant exchange and trigger multi-level summaries.\"\"\"\n BUFFER.append(exchange)\n count = len(BUFFER)\n summaries = {}\n\n # ── Normal tiered behavior up to 30 ──\n if count < 30:\n if count in LEVELS:\n for lvl in LEVELS:\n if lvl <= count:\n summaries[f\"L{lvl}\"] = summarize(list(BUFFER)[-lvl:], lvl)\n log_to_file(f\"L{lvl}\", summaries[f\"L{lvl}\"])\n\n\n # ── Beyond 30: keep summarizing every +15 exchanges ──\n else:\n # Find next milestone after 30 (45, 60, 75, ...)\n milestone = 30 + ((count - 30) // 15) * 15\n if count == milestone:\n summaries[f\"L{milestone}\"] = summarize(list(BUFFER)[-15:], milestone)\n log_to_file(f\"L{milestone}\", summaries[f\"L{milestone}\"])\n \n # Optional: merge all continuity summaries so far into a running meta-summary\n joined = \"\\n\\n\".join(\n [s for key, s in summaries.items() if key.startswith(\"L\")]\n )\n meta_prompt = f\"\"\"\n You are Lyra Intake composing an 'Ongoing Continuity Report' that merges\n all prior continuity summaries into one living narrative.\n Focus on major themes, changes, and lessons so far.\n\n Continuity Summaries:\n {joined}\n\n Ongoing Continuity Report:\n \"\"\"\n meta_summary = f\"[L∞ Ongoing Continuity Report]: {query_llm(meta_prompt)}\"\n summaries[\"L∞\"] = meta_summary\n log_to_file(\"L∞\", meta_summary)\n\n print(f\"🌀 L{milestone} continuity summary created (messages {count-14}-{count})\")\n\n # ── Log summaries ──\n if summaries:\n print(f\"🧩 Summaries generated at count={count}: {list(summaries.keys())}\")\n\n return {\n \"ok\": True,\n \"exchange_count\": count,\n \"summaries\": summaries or None,\n }\n\n# ───────────────────────────────────────────────\n# ✅ Health check\n# ───────────────────────────────────────────────\n@app.get(\"/health\")\ndef health():\n return {\"ok\": True, \"model\": SUMMARY_MODEL, \"url\": SUMMARY_URL}" }, { "role": "assistant", "content": "awesome — that’s a really clean script, and you already have all the right hooks for this patch. \n\nhere’s **exactly** where and how to insert the NeoMem summary-push feature 👇 \n\n---\n\n### 🔧 1. right under your imports + env section \n(after the existing `SUMMARY_*` env loads, before `app = FastAPI()`):\n\n```python\n# ───────────────────────────────────────────────\n# 🧠 NeoMem connection\n# ───────────────────────────────────────────────\nNEOMEM_API = os.getenv(\"NEOMEM_API\")\nNEOMEM_KEY = os.getenv(\"NEOMEM_KEY\")\n\ndef push_summary_to_neomem(summary_text: str, level: str):\n \"\"\"Send summarized text to NeoMem as an update (merge if exists).\"\"\"\n if not NEOMEM_API:\n print(\"⚠️ NEOMEM_API not set, skipping NeoMem push\")\n return\n\n payload = {\n \"memory\": {\n \"data\": summary_text,\n \"metadata\": {\n \"type\": \"summary\",\n \"level\": level,\n \"source\": \"intake\",\n },\n },\n \"update\": True, # let NeoMem merge existing summary for this level\n }\n\n headers = {\"Content-Type\": \"application/json\"}\n if NEOMEM_KEY:\n headers[\"Authorization\"] = f\"Bearer {NEOMEM_KEY}\"\n\n try:\n r = requests.post(f\"{NEOMEM_API}/memories\", json=payload, headers=headers, timeout=10)\n r.raise_for_status()\n print(f\"🧠 NeoMem updated ({level}, {len(summary_text)} chars)\")\n except Exception as e:\n print(f\"❌ NeoMem push failed ({level}): {e}\")\n```\n\n---\n\n### 🔧 2. hook it into the summarization workflow \nscroll down to where you already call `log_to_file()` inside `add_exchange()` — add one more line right after each log call: \n\n```python\nlog_to_file(f\"L{lvl}\", summaries[f\"L{lvl}\"])\npush_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\")\n```\n\nand for the large milestone block (around `L∞`), also tack on:\n\n```python\npush_summary_to_neomem(meta_summary, \"L∞\")\n```\n\n---\n\n### ✅ result\nnow every time Intake generates a new summary tier, it will:\n1. write it to `/app/logs/summaries.log`\n2. immediately post it to NeoMem using the `NEOMEM_API` + `NEOMEM_KEY` vars\n3. tell NeoMem to update (merge) the existing summary record instead of duplicating\n\n---\n\nnext test once you patch it:\n```bash\ndocker compose up -d --build intake\ndocker logs -f intake\n```\n\nthen add an exchange via your `/add_exchange` route; after a few, you should see \n`🧠 NeoMem updated (L5, 642 chars)` or similar in the logs. \n\nwant me to show a one-liner `curl` you can use to fake a few exchanges for testing?" }, { "role": "user", "content": "Here is my idea: \nExactly. 🔥\n\nYou just described what would make **Intake** the perfect middle-layer brain between Relay and NeoMem — a *dual-awareness system*:\n\n---\n\n### 🧩 **Session-Aware Intake (Per-Thread Memory)**\n\nEach chat/session gets its own hopper:\n\n* Keeps its own rolling buffer of exchanges (like now).\n* Generates **L1–L5 summaries** scoped only to that session.\n* Posts those granular summaries to NeoMem tagged with:\n\n ```json\n { \"session_id\": \"sess-abcd1234\", \"layer\": \"L5\", \"source\": \"intake\" }\n ```\n* This preserves context and continuity for each conversation topic — poker, Lyra dev, work logs, etc.\n\n---\n\n### ⏰ **Time-Aware Intake (Cross-Session Reflection)**\n\nRunning in parallel, a “chronological summarizer” (daily/periodic) that:\n\n* Merges recent activity across all sessions within a timeframe.\n* Generates a high-level reflection, e.g.\n\n > “Today, Brian and Lyra discussed improvements to the Lyra UI, explored session persistence, and briefly analyzed poker strategy decisions.”\n* Posts to NeoMem tagged with:\n\n ```json\n { \"scope\": \"daily_summary\", \"date\": \"2025-10-28\", \"source\": \"intake-chron\" }\n ```\n* These become temporal anchors — perfect for “What did we do yesterday?” queries later.\n\n---\n\n### 🧠 Why both matter\n\n* **Session summaries** = depth of context per thread.\n* **Chronological summaries** = continuity of story over time.\n Together they make Intake feel like a *journalist* for your entire system — one that can zoom in or out.\n\n---\n\nIf you like this structure, next step would be:\n\n1. Add a `session_id` field to Intake’s `POST /summarize` endpoint.\n2. Build a lightweight **daily cron or timer** in Intake that checks “if any summaries happened today” and writes a combined reflection to NeoMem.\n\n\nAbove is a chat from you. Lets make this happen" }, { "role": "assistant", "content": "hell yes — that’s the next-level version of Intake we were aiming for 💡 \n\nwe’ll roll this out in two small, working phases so we don’t break your current summarizer: \n\n---\n\n## ⚙️ Phase 1 — Session-Aware Intake \n(each conversation buffer becomes its own “session brain”)\n\n### 🔩 Step 1 → Extend the `/add_exchange` route\nWe’ll add an optional `session_id` in the request body. \nIf not supplied, Intake generates one (like `sess-`).\n\n**Insert just under:** \n```python\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n```\n\n**Replace with:**\n```python\nfrom uuid import uuid4\n\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n \"\"\"Add one user→assistant exchange and trigger multi-level summaries (session-aware).\"\"\"\n session_id = exchange.get(\"session_id\") or f\"sess-{uuid4().hex[:8]}\"\n exchange[\"session_id\"] = session_id\n```\n\n---\n\n### 🔩 Step 2 → Track buffers per session \nAbove your single `BUFFER`, change this:\n\n```python\n# Rolling conversation buffer (25 total exchanges in memory)\nBUFFER = deque(maxlen=100)\n```\n\nto:\n\n```python\n# Multiple rolling buffers keyed by session_id\nSESSIONS = {}\n```\n\nand at the start of `add_exchange()` right after extracting `session_id`:\n\n```python\nif session_id not in SESSIONS:\n from collections import deque\n SESSIONS[session_id] = deque(maxlen=100)\nbuffer = SESSIONS[session_id]\nbuffer.append(exchange)\ncount = len(buffer)\n```\n\nThen everywhere you currently reference `BUFFER`, swap it for `buffer`.\n\n---\n\n### 🔩 Step 3 → Push summaries with session metadata\nIn the NeoMem helper we added earlier, replace the payload with:\n\n```python\npayload = {\n \"memory\": {\n \"data\": summary_text,\n \"metadata\": {\n \"type\": \"summary\",\n \"level\": level,\n \"source\": \"intake\",\n \"session_id\": session_id,\n },\n },\n \"update\": True,\n}\n```\n\nand update the call inside `add_exchange()`:\n```python\npush_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\", session_id)\n```\nso modify the function signature to accept `session_id`.\n\nThat gives each memory its own unique tag for that thread.\n\n---\n\n## 🕰 Phase 2 — Time-Aware / Daily Reflection \n\nOnce Phase 1 is verified working, we’ll add a tiny daily job that:\n1. Queries today’s summaries from `/app/logs/summaries.log` \n2. Generates one reflection paragraph \n3. Posts to NeoMem with metadata: \n ```json\n {\"scope\":\"daily_summary\",\"date\":\"YYYY-MM-DD\",\"source\":\"intake-chron\"}\n ```\n\nImplementation-wise we can use:\n```python\nimport threading, time, datetime\ndef daily_reflector():\n while True:\n now = datetime.datetime.now()\n if now.hour == 23 and now.minute >= 55: # around midnight\n make_and_push_daily_summary()\n time.sleep(3600) # sleep an hour to avoid repeat\n time.sleep(60)\nthreading.Thread(target=daily_reflector, daemon=True).start()\n```\n\nbut we’ll wire that after confirming the per-session summary flow works.\n\n---\n\n✅ **Next action:** \nLet’s patch Phase 1 first (session-aware buffers + NeoMem payload). \nOnce you rebuild and confirm that each session_id writes separate summaries to NeoMem, we’ll bolt on the nightly “chronological reflection” worker. \n\nwant me to generate the ready-to-paste code diff for just Phase 1 now?" }, { "role": "user", "content": "sure lets do phase 1" }, { "role": "assistant", "content": "perfect — here’s your **Phase 1: Session-Aware Intake** patch in drop-in format. \neverything below is written so you can copy-paste straight into your current `intake.py` with minimal fuss 👇 \n\n---\n\n### 🧩 1️⃣ Imports + NeoMem helper (additions)\nright below your existing NeoMem helper from before (`push_summary_to_neomem`), **replace** it with this expanded version that handles `session_id`: \n\n```python\n# ───────────────────────────────────────────────\n# 🧠 NeoMem connection (session-aware)\n# ───────────────────────────────────────────────\nNEOMEM_API = os.getenv(\"NEOMEM_API\")\nNEOMEM_KEY = os.getenv(\"NEOMEM_KEY\")\n\ndef push_summary_to_neomem(summary_text: str, level: str, session_id: str):\n \"\"\"Send summarized text to NeoMem, tagged by session_id.\"\"\"\n if not NEOMEM_API:\n print(\"⚠️ NEOMEM_API not set, skipping NeoMem push\")\n return\n\n payload = {\n \"memory\": {\n \"data\": summary_text,\n \"metadata\": {\n \"type\": \"summary\",\n \"level\": level,\n \"source\": \"intake\",\n \"session_id\": session_id,\n },\n },\n \"update\": True,\n }\n\n headers = {\"Content-Type\": \"application/json\"}\n if NEOMEM_KEY:\n headers[\"Authorization\"] = f\"Bearer {NEOMEM_KEY}\"\n\n try:\n r = requests.post(f\"{NEOMEM_API}/memories\", json=payload, headers=headers, timeout=10)\n r.raise_for_status()\n print(f\"🧠 NeoMem updated ({level}, {session_id}, {len(summary_text)} chars)\")\n except Exception as e:\n print(f\"❌ NeoMem push failed ({level}, {session_id}): {e}\")\n```\n\n---\n\n### 🧩 2️⃣ Multi-session buffers\nfind this block near the top:\n\n```python\n# Rolling conversation buffer (25 total exchanges in memory)\nBUFFER = deque(maxlen=100)\n```\n\nand **replace it** with:\n\n```python\n# Multiple rolling buffers keyed by session_id\nSESSIONS = {}\n```\n\n---\n\n### 🧩 3️⃣ Modified `/add_exchange` route\nscroll down to the start of your `/add_exchange` route and **replace everything from**\n```python\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n```\n**down to the first `BUFFER.append(exchange)`** \nwith this:\n\n```python\nfrom uuid import uuid4\n\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n \"\"\"Add one user→assistant exchange and trigger multi-level summaries (session-aware).\"\"\"\n\n # ── Identify or create session ──\n session_id = exchange.get(\"session_id\") or f\"sess-{uuid4().hex[:8]}\"\n exchange[\"session_id\"] = session_id\n\n # ── Manage per-session buffer ──\n if session_id not in SESSIONS:\n from collections import deque\n SESSIONS[session_id] = deque(maxlen=100)\n print(f\"🆕 New session created: {session_id}\")\n\n buffer = SESSIONS[session_id]\n buffer.append(exchange)\n count = len(buffer)\n summaries = {}\n```\n\nthen, everywhere in that function that previously referenced `BUFFER`, change it to `buffer`.\n\n---\n\n### 🧩 4️⃣ Push summaries to NeoMem\nafter each existing `log_to_file()` call in that function, add:\n```python\npush_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\", session_id)\n```\n\nand near the bottom where you log `meta_summary` (the “L∞” part), also add:\n```python\npush_summary_to_neomem(meta_summary, \"L∞\", session_id)\n```\n\n---\n\n### ✅ Testing checklist\n1. rebuild Intake: \n ```bash\n docker compose up -d --build intake\n docker logs -f intake\n ```\n2. POST a few sample exchanges with a `session_id` (or let it auto-create):\n ```bash\n curl -X POST http://localhost:7080/add_exchange \\\n -H \"Content-Type: application/json\" \\\n -d '{\"session_id\": \"sess-test123\", \"turns\":[{\"content\":\"talking about Lyra memory\"},{\"content\":\"ack, summarizing logic\"}]}'\n ```\n3. watch for:\n ```\n 🧩 Summaries generated ...\n 🧠 NeoMem updated (L1, sess-test123, 300 chars)\n ```\n4. confirm they appear in NeoMem via:\n ```bash\n curl http://10.0.0.40:7077/search -H 'Content-Type: application/json' \\\n -d '{\"query\":\"sess-test123\"}'\n ```\n\n---\n\nonce that’s confirmed working, we’ll wire **Phase 2 (daily reflection)** to run automatically each night." }, { "role": "user", "content": "i didnt make the changes from before, my intake is unchanged since i sent it to you" }, { "role": "assistant", "content": "perfect — that actually makes this cleaner 😎 \n\nwe’ll do the **complete Phase 1 patch** from your *original untouched* `intake.py` so you can just copy-paste the diff in one go.\n\n---\n\n## 🧩 Full Phase 1 (Session-Aware Intake) Patch\n\n> 🔧 everything here assumes the file you sent me earlier — just insert the marked blocks in those exact spots.\n\n---\n\n### **1️⃣ Below the environment variables**\nafter this section in your file:\n```python\nSUMMARY_TEMPERATURE = float(os.getenv(\"SUMMARY_TEMPERATURE\", \"0.3\"))\n```\n**paste this:**\n```python\n# ───────────────────────────────────────────────\n# 🧠 NeoMem connection (session-aware)\n# ───────────────────────────────────────────────\nfrom uuid import uuid4\n\nNEOMEM_API = os.getenv(\"NEOMEM_API\")\nNEOMEM_KEY = os.getenv(\"NEOMEM_KEY\")\n\ndef push_summary_to_neomem(summary_text: str, level: str, session_id: str):\n \"\"\"Send summarized text to NeoMem, tagged by session_id.\"\"\"\n if not NEOMEM_API:\n print(\"⚠️ NEOMEM_API not set, skipping NeoMem push\")\n return\n\n payload = {\n \"memory\": {\n \"data\": summary_text,\n \"metadata\": {\n \"type\": \"summary\",\n \"level\": level,\n \"source\": \"intake\",\n \"session_id\": session_id,\n },\n },\n \"update\": True,\n }\n\n headers = {\"Content-Type\": \"application/json\"}\n if NEOMEM_KEY:\n headers[\"Authorization\"] = f\"Bearer {NEOMEM_KEY}\"\n\n try:\n r = requests.post(f\"{NEOMEM_API}/memories\", json=payload, headers=headers, timeout=10)\n r.raise_for_status()\n print(f\"🧠 NeoMem updated ({level}, {session_id}, {len(summary_text)} chars)\")\n except Exception as e:\n print(f\"❌ NeoMem push failed ({level}, {session_id}): {e}\")\n```\n\n---\n\n### **2️⃣ Replace the single buffer**\nfind this line:\n```python\nBUFFER = deque(maxlen=100)\n```\nand replace it with:\n```python\n# Multiple rolling buffers keyed by session_id\nSESSIONS = {}\n```\n\n---\n\n### **3️⃣ Modify the `/add_exchange` route**\nreplace everything from \n```python\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n \"\"\"Add one user→assistant exchange and trigger multi-level summaries.\"\"\"\n BUFFER.append(exchange)\n count = len(BUFFER)\n summaries = {}\n```\n**down to the line `count = len(BUFFER)`** \nwith this:\n\n```python\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n \"\"\"Add one user→assistant exchange and trigger multi-level summaries (session-aware).\"\"\"\n\n # ── Identify or create session ──\n session_id = exchange.get(\"session_id\") or f\"sess-{uuid4().hex[:8]}\"\n exchange[\"session_id\"] = session_id\n\n # ── Manage per-session buffer ──\n if session_id not in SESSIONS:\n from collections import deque\n SESSIONS[session_id] = deque(maxlen=100)\n print(f\"🆕 New session created: {session_id}\")\n\n buffer = SESSIONS[session_id]\n buffer.append(exchange)\n count = len(buffer)\n summaries = {}\n```\n\nand then, in the rest of that function:\n- change all references of `BUFFER` → `buffer`\n- after each call to `log_to_file(...)`, add:\n ```python\n push_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\", session_id)\n ```\n- and near the bottom where `meta_summary` is logged, add:\n ```python\n push_summary_to_neomem(meta_summary, \"L∞\", session_id)\n ```\n\n---\n\n### **4️⃣ Save and rebuild**\n```bash\ndocker compose up -d --build intake\ndocker logs -f intake\n```\n\nthen you can test:\n```bash\ncurl -X POST http://localhost:7080/add_exchange \\\n -H \"Content-Type: application/json\" \\\n -d '{\"session_id\":\"sess-demo1\",\"turns\":[{\"content\":\"testing session memory\"},{\"content\":\"ack\"}]}'\n```\n\nwatch for:\n```\n🧠 NeoMem updated (L1, sess-demo1, … chars)\n```\n\n---\n\nonce that’s working, Intake will keep **separate rolling buffers per session**, and every summary it generates will automatically post to NeoMem tagged with its `session_id`.\n\nwant me to show the quick one-liner `curl` you can loop to simulate multiple sessions next?" }, { "role": "user", "content": "im confused about the: change all references of BUFFER → buffer\n\nafter each call to log_to_file(...), add:" }, { "role": "assistant", "content": "good call — that line’s vague if you’re not staring at the code in context. \nlet’s go slow and literal so you know *exactly* what to change.\n\n---\n\n### 🧠 why we’re doing it\nyour original `intake.py` uses a single global `BUFFER`. \nafter this patch, we’re moving to a **per-session** buffer stored in `SESSIONS[session_id]`, which we call `buffer`. \nso we just need to swap those references inside the `add_exchange()` function — nowhere else.\n\n---\n\n### 🪛 step-by-step inside `add_exchange()`\n\n1️⃣ **find every place that says `BUFFER` in that function.** \nyou’ll see them in these lines:\n\n```python\nBUFFER.append(exchange)\ncount = len(BUFFER)\n...\nsummaries[f\"L{lvl}\"] = summarize(list(BUFFER)[-lvl:], lvl)\n```\n\n2️⃣ **replace them exactly like this:**\n\n```python\nbuffer.append(exchange)\ncount = len(buffer)\n...\nsummaries[f\"L{lvl}\"] = summarize(list(buffer)[-lvl:], lvl)\n```\n\n(do this for each occurrence — there are 3-4 in total.)\n\n---\n\n### 🪛 next, add the NeoMem call\nafter each place you already call `log_to_file()`, add a new line directly beneath it.\n\n**example from your L1-L30 block:**\n\n```python\nlog_to_file(f\"L{lvl}\", summaries[f\"L{lvl}\"])\npush_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\", session_id)\n```\n\nand near the very bottom of the same function, where you handle the “L∞” meta-summary:\n\n```python\nlog_to_file(\"L∞\", meta_summary)\npush_summary_to_neomem(meta_summary, \"L∞\", session_id)\n```\n\nthat’s it — those are the only insertions/changes you need inside that route.\n\n---\n\n✅ once you’ve done that:\n```bash\ndocker compose up -d --build intake\ndocker logs -f intake\n```\nyou should see lines like \n`🧠 NeoMem updated (L5, sess-xxxx, 612 chars)` \nafter a few `/add_exchange` calls." }, { "role": "user", "content": "from fastapi import FastAPI, Body\nfrom collections import deque\nimport requests\nimport os\nimport sys\nfrom dotenv import load_dotenv\n\n# ───────────────────────────────────────────────\n# 🔧 Load environment variables\n# ───────────────────────────────────────────────\nload_dotenv()\n\nSUMMARY_MODEL = os.getenv(\"SUMMARY_MODEL_NAME\", \"mistral-7b-instruct-v0.2.Q4_K_M.gguf\")\nSUMMARY_URL = os.getenv(\"SUMMARY_API_URL\", \"http://localhost:8080/v1/completions\")\nSUMMARY_MAX_TOKENS = int(os.getenv(\"SUMMARY_MAX_TOKENS\", \"200\"))\nSUMMARY_TEMPERATURE = float(os.getenv(\"SUMMARY_TEMPERATURE\", \"0.3\"))\n\n# ───────────────────────────────────────────────\n# 🧠 NeoMem connection (session-aware)\n# ───────────────────────────────────────────────\nfrom uuid import uuid4\n\nNEOMEM_API = os.getenv(\"NEOMEM_API\")\nNEOMEM_KEY = os.getenv(\"NEOMEM_KEY\")\n\ndef push_summary_to_neomem(summary_text: str, level: str, session_id: str):\n \"\"\"Send summarized text to NeoMem, tagged by session_id.\"\"\"\n if not NEOMEM_API:\n print(\"⚠️ NEOMEM_API not set, skipping NeoMem push\")\n return\n\n payload = {\n \"memory\": {\n \"data\": summary_text,\n \"metadata\": {\n \"type\": \"summary\",\n \"level\": level,\n \"source\": \"intake\",\n \"session_id\": session_id,\n },\n },\n \"update\": True,\n }\n\n headers = {\"Content-Type\": \"application/json\"}\n if NEOMEM_KEY:\n headers[\"Authorization\"] = f\"Bearer {NEOMEM_KEY}\"\n\n try:\n r = requests.post(f\"{NEOMEM_API}/memories\", json=payload, headers=headers, timeout=10)\n r.raise_for_status()\n print(f\"🧠 NeoMem updated ({level}, {session_id}, {len(summary_text)} chars)\")\n except Exception as e:\n print(f\"❌ NeoMem push failed ({level}, {session_id}): {e}\")\n\n\n# ───────────────────────────────────────────────\n# ⚙️ FastAPI + buffer setup\n# ───────────────────────────────────────────────\napp = FastAPI()\n\n# Multiple rolling buffers keyed by session_id\nSESSIONS = {}\n\n\n# Summary trigger points\n# → low-tier: quick factual recaps\n# → mid-tier: “Reality Check” reflections\n# → high-tier: rolling continuity synthesis\nLEVELS = [1, 2, 5, 10, 20, 30]\n\n@app.on_event(\"startup\")\ndef show_boot_banner():\n print(\"🧩 Intake booting...\")\n print(f\" Model: {SUMMARY_MODEL}\")\n print(f\" API: {SUMMARY_URL}\")\n print(f\" Max tokens: {SUMMARY_MAX_TOKENS}, Temp: {SUMMARY_TEMPERATURE}\")\n sys.stdout.flush()\n\n# ───────────────────────────────────────────────\n# 🧠 Hierarchical Summarizer (L10→L20→L30 cascade)\n# ───────────────────────────────────────────────\nSUMMARIES_CACHE = {\"L10\": [], \"L20\": [], \"L30\": []}\n\ndef summarize(exchanges, level):\n \"\"\"Hierarchical summarizer: builds local and meta summaries.\"\"\"\n # Join exchanges into readable text\n text = \"\\n\".join(\n f\"User: {e['turns'][0]['content']}\\nAssistant: {e['turns'][1]['content']}\"\n for e in exchanges\n )\n\n def query_llm(prompt: str):\n try:\n resp = requests.post(\n SUMMARY_URL,\n json={\n \"model\": SUMMARY_MODEL,\n \"prompt\": prompt,\n \"max_tokens\": SUMMARY_MAX_TOKENS,\n \"temperature\": SUMMARY_TEMPERATURE,\n },\n timeout=180,\n )\n resp.raise_for_status()\n data = resp.json()\n return data.get(\"choices\", [{}])[0].get(\"text\", \"\").strip()\n except Exception as e:\n return f\"[Error summarizing: {e}]\"\n\n # ───── L10: local “Reality Check” block ─────\n if level == 10:\n prompt = f\"\"\"\n You are Lyra Intake performing a 'Reality Check' for the last {len(exchanges)} exchanges.\n Summarize this block as one coherent paragraph describing the user’s focus, progress, and tone.\n Avoid bullet points.\n\n Exchanges:\n {text}\n\n Reality Check Summary:\n \"\"\"\n summary = query_llm(prompt)\n SUMMARIES_CACHE[\"L10\"].append(summary)\n\n # ───── L20: merge L10s ─────\n elif level == 20:\n # 1️⃣ create fresh L10 for 11–20\n l10_prompt = f\"\"\"\n You are Lyra Intake generating a second Reality Check for the most recent {len(exchanges)} exchanges.\n Summarize them as one paragraph describing what's new or changed since the last block.\n Avoid bullet points.\n\n Exchanges:\n {text}\n\n Reality Check Summary:\n \"\"\"\n new_l10 = query_llm(l10_prompt)\n SUMMARIES_CACHE[\"L10\"].append(new_l10)\n\n # 2️⃣ merge all L10s into a Session Overview\n joined_l10s = \"\\n\\n\".join(SUMMARIES_CACHE[\"L10\"])\n l20_prompt = f\"\"\"\n You are Lyra Intake merging multiple 'Reality Checks' into a single Session Overview.\n Summarize the following Reality Checks into one short paragraph capturing the ongoing goals,\n patterns, and overall progress.\n\n Reality Checks:\n {joined_l10s}\n\n Session Overview:\n \"\"\"\n l20_summary = query_llm(l20_prompt)\n SUMMARIES_CACHE[\"L20\"].append(l20_summary)\n summary = new_l10 + \"\\n\\n\" + l20_summary\n\n # ───── L30: continuity synthesis ─────\n elif level == 30:\n # 1️⃣ create new L10 for 21–30\n new_l10 = query_llm(f\"\"\"\n You are Lyra Intake creating a new Reality Check for exchanges 21–30.\n Summarize this block in one cohesive paragraph, describing any shifts in focus or tone.\n\n Exchanges:\n {text}\n\n Reality Check Summary:\n \"\"\")\n\n SUMMARIES_CACHE[\"L10\"].append(new_l10)\n\n # 2️⃣ merge all lower levels for continuity\n joined = \"\\n\\n\".join(SUMMARIES_CACHE[\"L10\"] + SUMMARIES_CACHE[\"L20\"])\n continuity_prompt = f\"\"\"\n You are Lyra Intake performing a 'Continuity Report' — a high-level reflection combining all Reality Checks\n and Session Overviews so far. Describe how the conversation has evolved, the key insights, and remaining threads.\n\n Reality Checks and Overviews:\n {joined}\n\n Continuity Report:\n \"\"\"\n l30_summary = query_llm(continuity_prompt)\n SUMMARIES_CACHE[\"L30\"].append(l30_summary)\n summary = new_l10 + \"\\n\\n\" + l30_summary\n\n # ───── L1–L5 (standard factual summaries) ─────\n else:\n prompt = f\"\"\"\n You are Lyra Intake, a background summarization module for an AI assistant.\n\n Your job is to compress recent chat exchanges between a user and an assistant\n into a short, factual summary. The user's name is Brian, and the assistant's name is Lyra. \n Focus only on the real conversation content.\n Do NOT invent names, people, or examples. Avoid speculation or storytelling.\n\n Summarize clearly what topics were discussed and what conclusions were reached.\n Avoid speculation, names, or bullet points.\n\n Exchanges:\n {text}\n\n Summary:\n \"\"\"\n summary = query_llm(prompt)\n\n return f\"[L{level} Summary of {len(exchanges)} exchanges]: {summary}\"\n\nfrom datetime import datetime\n\nLOG_DIR = \"/app/logs\"\nos.makedirs(LOG_DIR, exist_ok=True)\n\ndef log_to_file(level: str, summary: str):\n \"\"\"Append each summary to a persistent .txt log file.\"\"\"\n timestamp = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n filename = os.path.join(LOG_DIR, \"summaries.log\")\n with open(filename, \"a\", encoding=\"utf-8\") as f:\n f.write(f\"[{timestamp}] {level}\\n{summary}\\n{'='*60}\\n\\n\")\n\n\n# ───────────────────────────────────────────────\n# 📨 Routes\n# ───────────────────────────────────────────────\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n \"\"\"Add one user→assistant exchange and trigger multi-level summaries (session-aware).\"\"\"\n\n # ── Identify or create session ──\n session_id = exchange.get(\"session_id\") or f\"sess-{uuid4().hex[:8]}\"\n exchange[\"session_id\"] = session_id\n\n # ── Manage per-session buffer ──\n if session_id not in SESSIONS:\n from collections import deque\n SESSIONS[session_id] = deque(maxlen=100)\n print(f\"🆕 New session created: {session_id}\")\n\n buffer = SESSIONS[session_id]\n buffer.append(exchange)\n count = len(buffer)\n summaries = {}\n\n # ── Normal tiered behavior up to 30 ──\n if count < 30:\n if count in LEVELS:\n for lvl in LEVELS:\n if lvl <= count:\n summaries[f\"L{lvl}\"] = summarize(list(buffer)[-lvl:], lvl)\n log_to_file(f\"L{lvl}\", summaries[f\"L{lvl}\"])\n push_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\", session_id)\n\n\n # ── Beyond 30: keep summarizing every +15 exchanges ──\n else:\n # Find next milestone after 30 (45, 60, 75, ...)\n milestone = 30 + ((count - 30) // 15) * 15\n if count == milestone:\n summaries[f\"L{milestone}\"] = summarize(list(buffer)[-15:], milestone)\n log_to_file(f\"L{milestone}\", summaries[f\"L{milestone}\"])\n push_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\", session_id)\n \n # Optional: merge all continuity summaries so far into a running meta-summary\n joined = \"\\n\\n\".join(\n [s for key, s in summaries.items() if key.startswith(\"L\")]\n )\n meta_prompt = f\"\"\"\n You are Lyra Intake composing an 'Ongoing Continuity Report' that merges\n all prior continuity summaries into one living narrative.\n Focus on major themes, changes, and lessons so far.\n\n Continuity Summaries:\n {joined}\n\n Ongoing Continuity Report:\n \"\"\"\n meta_summary = f\"[L∞ Ongoing Continuity Report]: {query_llm(meta_prompt)}\"\n summaries[\"L∞\"] = meta_summary\n log_to_file(\"L∞\", meta_summary)\n push_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\", session_id)\n\n print(f\"🌀 L{milestone} continuity summary created (messages {count-14}-{count})\")\n\n # ── Log summaries ──\n if summaries:\n print(f\"🧩 Summaries generated at count={count}: {list(summaries.keys())}\")\n\n return {\n \"ok\": True,\n \"exchange_count\": count,\n \"summaries\": summaries or None,\n }\n\n# ───────────────────────────────────────────────\n# ✅ Health check\n# ───────────────────────────────────────────────\n@app.get(\"/health\")\ndef health():\n return {\"ok\": True, \"model\": SUMMARY_MODEL, \"url\": SUMMARY_URL}" }, { "role": "assistant", "content": "Perfect — this looks **almost** right. You did the structural part perfectly; the only thing that needs fixing is a tiny copy/paste error in the *beyond-30 section* (lines with `L{lvl}`) — those still reference an undefined `lvl` variable instead of the `milestone` one we’re generating there. \n\nHere’s the corrected snippet for that part 👇 \n\n---\n\n### 🔧 Fix for the “beyond 30” block\nFind this section in your file:\n```python\nsummaries[f\"L{milestone}\"] = summarize(list(buffer)[-15:], milestone)\nlog_to_file(f\"L{milestone}\", summaries[f\"L{milestone}\"])\npush_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\", session_id)\n...\nlog_to_file(\"L∞\", meta_summary)\npush_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\", session_id)\n```\n\nand replace it with this corrected version:\n```python\nsummaries[f\"L{milestone}\"] = summarize(list(buffer)[-15:], milestone)\nlog_to_file(f\"L{milestone}\", summaries[f\"L{milestone}\"])\npush_summary_to_neomem(summaries[f\"L{milestone}\"], f\"L{milestone}\", session_id)\n\n# Optional: merge all continuity summaries so far into a running meta-summary\njoined = \"\\n\\n\".join(\n [s for key, s in summaries.items() if key.startswith(\"L\")]\n)\nmeta_prompt = f\"\"\"\nYou are Lyra Intake composing an 'Ongoing Continuity Report' that merges\nall prior continuity summaries into one living narrative.\nFocus on major themes, changes, and lessons so far.\n\nContinuity Summaries:\n{joined}\n\nOngoing Continuity Report:\n\"\"\"\nmeta_summary = f\"[L∞ Ongoing Continuity Report]: {query_llm(meta_prompt)}\"\nsummaries[\"L∞\"] = meta_summary\nlog_to_file(\"L∞\", meta_summary)\npush_summary_to_neomem(meta_summary, \"L∞\", session_id)\n\nprint(f\"🌀 L{milestone} continuity summary created (messages {count-14}-{count})\")\n```\n\n---\n\n✅ **Quick recap of what this does now:**\n- Each chat session (unique `session_id`) gets its own rolling buffer.\n- Every summary tier (L1–L30, L∞) logs locally **and** posts to NeoMem with that session tag.\n- No undefined variable errors or duplicate pushes.\n\n---\n\nOnce you update this block, rebuild Intake:\n```bash\ndocker compose up -d --build intake\ndocker logs -f intake\n```\n\nThen test again with:\n```bash\ncurl -X POST http://localhost:7080/add_exchange \\\n -H \"Content-Type: application/json\" \\\n -d '{\"session_id\":\"sess-demo1\",\"turns\":[{\"content\":\"testing session memory\"},{\"content\":\"ack\"}]}'\n```\n\nYou should see:\n```\n🆕 New session created: sess-demo1\n🧩 Summaries generated ...\n🧠 NeoMem updated (L1, sess-demo1, 312 chars)\n```\n\nWant me to show you a short script that sends multiple fake exchanges in sequence to simulate a real session for testing?" }, { "role": "user", "content": "\n🆕 New session created: sess-demo1\n❌ NeoMem push failed (L1, sess-demo1): 422 Client Error: Unprocessable Entity for url: http://10.0.0.40:7077/memories\n🧩 Summaries generated at count=1: ['L1']\nINFO: 172.18.0.1:57018 - \"POST /add_exchange HTTP/1.1\" 200 OK\n\nI'm not sure neomem has the ability to accept tags atm" }, { "role": "assistant", "content": "ah — perfect catch 👀 \n\nthat `422 Unprocessable Entity` confirms NeoMem didn’t like our payload shape. \nlikely it’s rejecting one of the nested fields (`\"metadata\"`, `\"update\"`, or `\"session_id\"`). \nmem0/NVGRAM forks tend to expect **flat JSON** like:\n\n```json\n{\n \"data\": \"...\",\n \"metadata\": { ... }\n}\n```\n—but not wrapped in `\"memory\": { ... }`.\n\nLet’s patch it the quick, safe way so it works with both older and newer NVGRAM/NeoMem builds.\n\n---\n\n### 🧩 Fix for NeoMem payload format\nFind your `push_summary_to_neomem()` function and replace **just the `payload` block** with this version:\n\n```python\n payload = {\n \"data\": summary_text,\n \"metadata\": {\n \"type\": \"summary\",\n \"level\": level,\n \"source\": \"intake\",\n \"session_id\": session_id,\n },\n \"update\": True\n }\n```\n\n(so `memory:` → gone; we send `data` and `metadata` at the root.)\n\n---\n\n### 🧩 Optional debug tip\nYou can confirm what NeoMem expects by running from host:\n\n```bash\ncurl http://10.0.0.40:7077/docs\n```\nand looking at the schema for `/memories`. \nIf it shows `data` + `metadata` top-level fields, then this new format is correct.\n\n---\n\n### ✅ Test again\nAfter editing:\n```bash\ndocker compose up -d --build intake\ndocker logs -f intake\n```\nthen resend your test exchange.\n\nExpected:\n```\n🧠 NeoMem updated (L1, sess-demo1, 312 chars)\n🧩 Summaries generated ...\n```\n\nIf you still get a 422 after that, we’ll peek at the NeoMem `/logs` output next — but this change usually fixes it." }, { "role": "user", "content": "serversdown@lyra-core:~/project-lyra/lyra-core$ curl http://10.0.0.40:7077/docs\n\n \n \n \n \n \n NEOMEM REST APIs - Swagger UI\n \n \n
\n
\n \n \n \n \n \n serversdown@lyra-core:~/project-lyra/lyra-core$\n\nI am open to changing the format that neomem uses. I actually think i would prefer to add more fields so its more organized" }, { "role": "assistant", "content": "nice — that’s the right move 👍 \n\nif you want **NeoMem** to evolve into a more structured memory engine (not just a drop-in Mem0 clone), this is the perfect moment to do it. \nwe can define a richer schema that supports the Intake → NeoMem flow *and* makes future retrieval/search cleaner.\n\n---\n\n## 🧩 proposal: structured NeoMem memory schema v1\n\neach memory will be a JSON doc with explicit fields instead of a vague blob.\n\n```json\n{\n \"id\": \"auto-generated\",\n \"session_id\": \"sess-xxxxxx\",\n \"layer\": \"L10\",\n \"source\": \"intake\",\n \"type\": \"summary\",\n \"scope\": \"session\", // or \"daily\" etc.\n \"timestamp\": \"2025-10-29T01:37:00Z\",\n \"text\": \"...summary text here...\",\n \"meta\": {\n \"token_count\": 241,\n \"model\": \"qwen2.5-14b-instruct\",\n \"confidence\": 0.92\n }\n}\n```\n\n---\n\n### ✅ benefits\n\n- **Flat but self-describing:** easy to query by `session_id`, `scope`, or `layer`.\n- **Model-agnostic:** Intake, Cortex, or Relay can all post to the same endpoint.\n- **Future-proof:** Reflection or Rewriting modules can PATCH existing docs safely.\n\n---\n\n## ⚙️ how to adapt NeoMem’s API\n\nopen your `nvgram-api` (soon NeoMem) repo → find the FastAPI route for \n```python\n@app.post(\"/memories\")\n```\n(it’s probably in `main.py` or `/nvgram/server/api.py`).\n\nInside that endpoint, you’ll see something like:\n```python\ndata = request.json().get(\"data\")\nmetadata = request.json().get(\"metadata\")\n```\n\nreplace it with something like:\n\n```python\nmemory = await request.json()\n\nsession_id = memory.get(\"session_id\")\ntext = memory.get(\"text\")\nlayer = memory.get(\"layer\")\nsource = memory.get(\"source\", \"unknown\")\nscope = memory.get(\"scope\", \"session\")\ntimestamp = memory.get(\"timestamp\") or datetime.utcnow().isoformat()\n\nmeta = memory.get(\"meta\", {})\n\n# Compose payload for vector + graph store\nrecord = {\n \"data\": text,\n \"metadata\": {\n \"session_id\": session_id,\n \"layer\": layer,\n \"source\": source,\n \"scope\": scope,\n \"timestamp\": timestamp,\n **meta,\n },\n}\nawait Memory.add(record)\n```\n\nthen return a structured response:\n```python\nreturn {\"ok\": True, \"session_id\": session_id, \"layer\": layer}\n```\n\n---\n\n## ⚙️ update Intake to match\n\nIntake’s payload becomes:\n\n```python\npayload = {\n \"session_id\": session_id,\n \"layer\": level,\n \"source\": \"intake\",\n \"type\": \"summary\",\n \"scope\": \"session\",\n \"timestamp\": datetime.utcnow().isoformat(),\n \"text\": summary_text,\n \"meta\": {\n \"model\": SUMMARY_MODEL,\n },\n}\n```\n\n---\n\nonce you rebuild NeoMem with that route update, it’ll happily accept those structured fields — and we’ll get a strong base for Phase 2 (time-aware summaries) later.\n\n---\n\nwant me to show you exactly where to edit NeoMem’s `/memories` route (line by line in its FastAPI app) so we can test the new schema live?" }, { "role": "user", "content": "okay lets put that on the backburner for now, i think its probably better to try to get it hooked up with less moving parts no?" }, { "role": "assistant", "content": "💯 exactly right — that’s the smart move. \n\nevolve **NeoMem’s schema later**, but for now, keep it simple so we can prove the loop works end-to-end first. \nthat means we’ll stick to the **current API contract** NeoMem already supports (`data` + `metadata`), and just get Intake → NeoMem posting successfully.\n\n---\n\n### 🧩 rollback plan\nso, in `push_summary_to_neomem()`, keep the “flat payload” we used in the last test:\n```python\npayload = {\n \"data\": summary_text,\n \"metadata\": {\n \"type\": \"summary\",\n \"level\": level,\n \"source\": \"intake\",\n \"session_id\": session_id,\n },\n \"update\": True\n}\n```\n\nthat should pass validation for the existing NVGRAM/Mem0-style endpoint.\n\n---\n\n### 🧪 test checklist\n1. Rebuild intake with that payload format.\n ```bash\n docker compose up -d --build intake\n docker logs -f intake\n ```\n2. Post a test exchange again:\n ```bash\n curl -X POST http://localhost:7080/add_exchange \\\n -H \"Content-Type: application/json\" \\\n -d '{\"session_id\":\"sess-test123\",\"turns\":[{\"content\":\"testing flat format\"},{\"content\":\"ok\"}]}'\n ```\n3. If you see:\n ```\n 🧠 NeoMem updated (L1, sess-test123, … chars)\n ```\n we’re golden.\n\nThen you’ll have Intake successfully summarizing → posting to NeoMem → storing those summaries. \n\nOnce that’s stable, we can circle back later and upgrade NeoMem’s schema into that richer, typed layout. \n\nwanna run this quick test with the flat payload and see if we get a `200 OK`?" }, { "role": "user", "content": "the last version didnt work we got the error" }, { "role": "assistant", "content": "Got it — let’s quickly nail the exact payload NeoMem expects so Intake can post successfully. Super short, 3 steps.\n\n### 1) Ask NeoMem what it wants (schema)\nRun this on the host (not inside a container):\n```bash\ncurl -s http://10.0.0.40:7077/openapi.json | jq '.paths[\"/memories\"].post.requestBody.content[\"application/json\"].schema'\n```\nIf `jq` isn’t installed, just:\n```bash\ncurl -s http://10.0.0.40:7077/openapi.json > /tmp/neomem_openapi.json && less /tmp/neomem_openapi.json\n```\nLook for the **field names** it requires (e.g., `text` vs `data`, `user_id` vs none, whether `metadata` is allowed, any `update` flag).\n\n### 2) Fire 3 quick trial POSTs (one will 200)\nFrom the host, try these **one by one** (watch which returns 200):\n\n**A. Mem0 classic (most common)**\n```bash\ncurl -s -o /dev/null -w \"%{http_code}\\n\" \\\n http://10.0.0.40:7077/memories \\\n -H 'Content-Type: application/json' \\\n -d '{\"text\":\"test summary\",\"user_id\":\"brian\",\"metadata\":{\"type\":\"summary\",\"level\":\"L1\",\"session_id\":\"sess-demo\"}}'\n```\n\n**B. NVGRAM flat (`data` instead of `text`)**\n```bash\ncurl -s -o /dev/null -w \"%{http_code}\\n\" \\\n http://10.0.0.40:7077/memories \\\n -H 'Content-Type: application/json' \\\n -d '{\"data\":\"test summary\",\"metadata\":{\"type\":\"summary\",\"level\":\"L1\",\"session_id\":\"sess-demo\"}}'\n```\n\n**C. Minimal (no metadata)**\n```bash\ncurl -s -o /dev/null -w \"%{http_code}\\n\" \\\n http://10.0.0.40:7077/memories \\\n -H 'Content-Type: application/json' \\\n -d '{\"text\":\"test summary\",\"user_id\":\"brian\"}'\n```\n\n- If **A** returns `200`, it wants `text` + `user_id` (+ optional `metadata`).\n- If **B** returns `200`, it wants `data` (+ optional `metadata`), no `user_id`.\n- If **C** returns `200`, it’s the ultra-minimal variant.\n\n(If all give `422`, run `docker logs -f ` while you retry one; FastAPI will print the exact validation error.)\n\n### 3) Update `push_summary_to_neomem()` to the working shape\nPick the variant that 200’d, then set the payload in Intake accordingly. Here are the two most likely working shapes:\n\n**If A worked (Mem0 classic):**\n```python\npayload = {\n \"text\": summary_text,\n \"user_id\": \"brian\",\n \"metadata\": {\n \"type\": \"summary\",\n \"level\": level,\n \"source\": \"intake\",\n \"session_id\": session_id,\n }\n}\n```\n\n**If B worked (NVGRAM flat):**\n```python\npayload = {\n \"data\": summary_text,\n \"metadata\": {\n \"type\": \"summary\",\n \"level\": level,\n \"source\": \"intake\",\n \"session_id\": session_id,\n }\n}\n```\n\nThen:\n```bash\ndocker compose up -d --build intake\ndocker logs -f intake\n```\nPost a couple `/add_exchange` calls; you should see `🧠 NeoMem updated (L1, sess-..., ...)`.\n\nWant me to inline the exact payload into your `push_summary_to_neomem()` once you tell me which of A/B/C returned 200?" }, { "role": "user", "content": " serversdown@lyra-core:~/project-lyra/lyra-cocurl -s http://10.0.0.40:7077/openapi.json | jq '.paths[\"/memories\"].post.requestBody.content[\"application/json\"].schema'ema'\n{\n \"$ref\": \"#/components/schemas/MemoryCreate\"\n}\nserversdown@lyra-core:~/project-lyra/lyra-core$" }, { "role": "assistant", "content": "perfect — that means the request body is defined by a schema called **`MemoryCreate`**. \n\nlet’s inspect that schema so we can see exactly which fields are required. \nrun this next: \n\n```bash\ncurl -s http://10.0.0.40:7077/openapi.json | jq '.components.schemas.MemoryCreate'\n``` \n\nthat’ll print out something like: \n\n```json\n{\n \"title\": \"MemoryCreate\",\n \"required\": [\"data\", \"metadata\"],\n \"type\": \"object\",\n \"properties\": {\n \"data\": { \"title\": \"Data\", \"type\": \"string\" },\n \"metadata\": { \"title\": \"Metadata\", \"type\": \"object\" }\n }\n}\n```\n\nor maybe it’ll show `text` or `memory` instead. \n\npaste whatever it outputs — once we see that, I’ll tell you the *exact payload shape* Intake should use so the `422` goes away." }, { "role": "user", "content": "serversdown@lyra-core:~/project-lyra/lyra-core$ curl -s http://10.0.0.40:7077/openapi.json | jq '.components.schemas.MemoryCreate'\n{\n \"properties\": {\n \"messages\": {\n \"items\": {\n \"$ref\": \"#/components/schemas/Message\"\n },\n \"type\": \"array\",\n \"title\": \"Messages\",\n \"description\": \"List of messages to store.\"\n },\n \"user_id\": {\n \"anyOf\": [\n {\n \"type\": \"string\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"title\": \"User Id\"\n },\n \"agent_id\": {\n \"anyOf\": [\n {\n \"type\": \"string\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"title\": \"Agent Id\"\n },\n \"run_id\": {\n \"anyOf\": [\n {\n \"type\": \"string\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"title\": \"Run Id\"\n },\n \"metadata\": {\n \"anyOf\": [\n {\n \"type\": \"object\"\n },\n {\n \"type\": \"null\"\n }\n ],\n \"title\": \"Metadata\"\n }\n },\n \"type\": \"object\",\n \"required\": [\n \"messages\"\n ],\n \"title\": \"MemoryCreate\"\n}" }, { "role": "assistant", "content": "Beautiful — that explains the 422 perfectly. \n\n✅ **NeoMem (MemoryCreate)** wants a payload with a top-level field named `messages`, \nwhich must be a list of message objects, each matching the `Message` schema — not `data` or `text`. \n\nIt also **allows optional**: `user_id`, `agent_id`, `run_id`, and `metadata`.\n\n---\n\n### 🧩 Required shape\n\nHere’s what your POST should look like for NeoMem to accept it:\n\n```json\n{\n \"messages\": [\n {\n \"role\": \"assistant\",\n \"content\": \"summary text here\"\n }\n ],\n \"user_id\": \"brian\",\n \"metadata\": {\n \"type\": \"summary\",\n \"level\": \"L1\",\n \"source\": \"intake\",\n \"session_id\": \"sess-demo1\"\n }\n}\n```\n\n---\n\n### 🧠 Fix in `push_summary_to_neomem()`\n\nReplace the entire `payload` block in that function with:\n\n```python\npayload = {\n \"messages\": [\n {\n \"role\": \"assistant\",\n \"content\": summary_text\n }\n ],\n \"user_id\": \"brian\",\n \"metadata\": {\n \"type\": \"summary\",\n \"level\": level,\n \"source\": \"intake\",\n \"session_id\": session_id,\n }\n}\n```\n\n*(you can change `\"brian\"` later if you want to dynamically tag by user)*\n\n---\n\n### ✅ Test\n\nRebuild Intake:\n\n```bash\ndocker compose up -d --build intake\ndocker logs -f intake\n```\n\nThen send your test exchange again. \nExpected output:\n\n```\n🧠 NeoMem updated (L1, sess-demo1, 312 chars)\n🧩 Summaries generated at count=1: ['L1']\n```\n\nIf that works, you’ll have a full working loop: \n**Relay → Intake summaries → NeoMem persistence.**\n\nWant me to show how to verify in NeoMem via `/search` that the summary stored correctly next?" }, { "role": "user", "content": "I remember there was a way to see all the stuff you could do with mem0 in the browser. Do you remember how??" }, { "role": "assistant", "content": "yep — you’re remembering the **FastAPI Swagger / ReDoc** auto-docs that Mem0 (and your NeoMem fork) expose. \nThey’re built right into the running container — you just need the right URL.\n\n---\n\n### 🧩 Ways to explore NeoMem’s API in your browser\n\n| UI | URL | Description |\n|----|-----|--------------|\n| **Swagger (interactive)** | [http://10.0.0.40:7077/docs](http://10.0.0.40:7077/docs) | Click endpoints, try live `POST`/`GET` calls, see parameter shapes. |\n| **ReDoc (read-only)** | [http://10.0.0.40:7077/redoc](http://10.0.0.40:7077/redoc) | Clean hierarchical list of endpoints + schemas. |\n| **OpenAPI JSON (raw spec)** | [http://10.0.0.40:7077/openapi.json](http://10.0.0.40:7077/openapi.json) | Machine-readable contract — what you just used with `jq`. |\n\n---\n\n### 💡 Pro tip\nIf you want to see *every schema* (like `Message`, `MemoryRead`, `SearchRequest`, etc.) directly in-browser:\n\n1. Go to **[http://10.0.0.40:7077/redoc](http://10.0.0.40:7077/redoc)** \n2. Scroll down to **Schemas** → expand any of them (it’s much cleaner than Swagger for browsing structures). \n\n---\n\nWould you like me to show the most useful endpoints to test from that UI (like `/memories`, `/search`, `/delete`, `/clear`)?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"sediment://file_000000004fa461f69cd7a375aaac11d1\", \"size_bytes\": 97609, \"width\": 1057, \"height\": 1289, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} Is it possible that intake or cortex could do something with these?" }, { "role": "assistant", "content": "absolutely — that Swagger screen is basically the **menu of powers** Intake and Cortex can call into NeoMem. \nyou’re looking at the REST brainstem of your whole Lyra system 🧠 \n\nhere’s what each endpoint means in Lyra-terms and how the modules could use them:\n\n---\n\n### 🟢 `POST /memories`\n**Add new memory entries.** \n→ this is what **Intake** is already using. \nUse it for:\n- summaries (`type: summary`)\n- observations / notes (`type: observation`)\n- structured logs from Relay or Cortex reflections \n\n---\n\n### 🟣 `GET /memories`\n**Retrieve all or filtered memories.** \n→ Cortex could call this to **load raw memory history** before reasoning runs. \nFor example:\n```python\nrequests.get(f\"{NEOMEM_API}/memories?user_id=brian\")\n```\n\n---\n\n### 🔍 `POST /search`\n**Semantic search across stored memories.** \n→ Cortex’s reasoning layer can query this to pull relevant past info. \nExample use:\n```python\nrequests.post(f\"{NEOMEM_API}/search\", json={\"query\": \"poker strategy adjustments\"})\n```\nreturns most semantically similar stored summaries or notes.\n\nThis is *the* endpoint to power retrieval-augmented reasoning (RAG) later.\n\n---\n\n### 🧹 `DELETE /memories` & `POST /reset`\n**Clear specific memories or wipe all.** \n→ Could be wired into an “amnesia” command or nightly pruning routine.\n\n---\n\n### 🛠 `PUT /memories/{id}`\n**Update existing memory.** \n→ perfect for future *Reflect* module:\nCortex re-reads summaries, refines them, and PUTs back the cleaned version.\n\n---\n\n### 🧾 `GET /memories/{id}/history`\n**Version tracking.** \n→ ideal for Reflect’s “audit trail”—see how a memory evolved after multiple rewrites.\n\n---\n\n### 🧩 how they fit\n| Module | Typical use of NeoMem endpoints |\n|---------|--------------------------------|\n| **Relay** | Adds raw exchanges (user messages) via `/memories`. |\n| **Intake** | Adds distilled summaries via `/memories`. |\n| **Cortex** | Queries `/search` for relevant memories, updates via `PUT`, may clear via `DELETE` when pruning. |\n| **Reflect (future)** | Periodic `/memories/{id}/history` + `PUT` to rewrite/merge thoughts. |\n\n---\n\nso yes — Intake, Cortex, and Reflect could each own a “layer” of interaction with this API:\n- **Intake** → adds & tags summaries \n- **Cortex** → searches & reasons \n- **Reflect** → rewrites & consolidates \n\nif you want, I can sketch out a little diagram or JSON map showing how each module talks to those endpoints (essentially your Lyra memory topology). \nwanna see that?" }, { "role": "user", "content": "okay that is pretty cool, i'll do that another time. For now though This is what i got when i GET memories \n\n\n \"results\": [\n {\n \"id\": \"c18eaca9-1c37-4279-859a-7bdc41f67c7a\",\n \"memory\": \"Knows about Ollie\",\n \"hash\": \"accf2dc3eae82b99d041424ddc6326e1\",\n \"metadata\": {\n \"cortex\": {},\n \"source\": \"relay\"\n },\n \"created_at\": \"2025-10-27T23:24:46.925241-07:00\",\n \"updated_at\": \"2025-10-27T23:25:21.084662-07:00\",\n \"user_id\": \"brian\"\n },\n {\n \"id\": \"11b7c00f-03b5-4b9f-b5ca-18234d6b04c0\",\n \"memory\": \"Ollie is a cat\",\n \"hash\": \"dfac499e816a7729ed954482d2a74f8b\",\n \"metadata\": {\n \"cortex\": {},\n \"source\": \"relay\"\n },\n \"created_at\": \"2025-10-27T23:25:44.560019-07:00\",\n \"updated_at\": null,\n \"user_id\": \"brian\"\n },\n {\n \"id\": \"2402632b-729a-4d68-956b-9593ee83639d\",\n \"memory\": \"Think Ollie is cute\",\n \"hash\": \"1db5d1f6e4d98cc2eba4b1aa223ff2c2\",\n \"metadata\": {\n \"cortex\": {},\n \"source\": \"relay\"\n },\n \"created_at\": \"2025-10-27T23:26:07.137764-07:00\",\n \"updated_at\": null,\n \"user_id\": \"brian\"\n },\n {\n \"id\": \"9af07abd-1387-439a-bb47-a57b3b69fe8e\",\n \"memory\": \"Need help making data look friendly for voters\",\n \"hash\": \"03bea92f436df7be4466729fef0a59e9\",\n \"metadata\": {\n \"cortex\": {},\n \"source\": \"relay\"\n },\n \"created_at\": \"2025-10-28T10:34:24.976675-07:00\",\n \"updated_at\": null,\n \"user_id\": \"brian\"\n },\n {\n \"id\": \"763ec746-99db-426b-84fa-57ac4c6ac5d4\",\n \"memory\": \"Drilling is important to the user's dad's campaign\",\n \"hash\": \"b4ec59d7aac241776a2464eaad5ab2b2\",\n \"metadata\": {\n \"cortex\": {},\n \"source\": \"relay\"\n },\n \"created_at\": \"2025-10-28T10:36:04.764127-07:00\",\n \"updated_at\": null,\n \"user_id\": \"brian\"\n }," }, { "role": "assistant", "content": "Nice — that output tells us exactly how NeoMem is currently storing stuff ✅ \n\nLet’s break down what we just learned from those entries:\n\n---\n\n### 🧠 Current NeoMem structure (confirmed live)\nEach record has:\n```json\n{\n \"id\": \"...\",\n \"memory\": \"string\",\n \"metadata\": {\n \"cortex\": {},\n \"source\": \"relay\"\n },\n \"user_id\": \"brian\",\n \"created_at\": \"...\",\n \"updated_at\": null\n}\n```\n\nSo the field to hold text is **`memory`**, not `data`, not `text`, not `messages`. \nThat’s the one your `Relay` is already using successfully.\n\n---\n\n### ✅ Fix for Intake payload\nNow we know the working format. \nUpdate your `push_summary_to_neomem()` to post in that same structure:\n\n```python\npayload = {\n \"memory\": summary_text,\n \"user_id\": \"brian\",\n \"metadata\": {\n \"source\": \"intake\",\n \"type\": \"summary\",\n \"level\": level,\n \"session_id\": session_id,\n }\n}\n```\n\nThat matches the schema your Relay is using exactly — only the `metadata.source` changes to `\"intake\"`.\n\n---\n\n### 🧪 Test it\n1. Update that payload.\n2. Rebuild Intake:\n ```bash\n docker compose up -d --build intake\n docker logs -f intake\n ```\n3. Send your test exchange again.\n\nExpected:\n```\n🧠 NeoMem updated (L1, sess-demo1, 312 chars)\n🧩 Summaries generated ...\n```\n\n---\n\nIf that works (it should), Intake will now show up alongside Relay in your `GET /memories` list with:\n```json\n\"metadata\": { \"source\": \"intake\", \"type\": \"summary\", \"level\": \"L1\", \"session_id\": \"...\" }\n```\n\nWould you like me to show you a quick `/search` example that queries only `source:intake` summaries once it’s posting successfully?" }, { "role": "user", "content": "❌ NeoMem push failed (L1, sess-demo1): 422 Client Error: Unprocessable Entity for url: http://10.0.0.40:7077/memories\n🧩 Summaries generated at count=1: ['L1']\nINFO: 172.18.0.1:36752 - \"POST /add_exchange HTTP/1.1\" 200 OK\n\nStill getting the same issues." }, { "role": "assistant", "content": "That’s actually useful—we’ve now tried all the “likely” payloads and confirmed that this NeoMem build is *not* behaving like the old Relay one. \n\nThe one thing we haven’t fully verified is what **the `Message` schema** looks like inside that `MemoryCreate` definition. That’s the key: the endpoint wants a list of `messages`, but we need to see exactly what a `Message` object must contain.\n\nLet’s peek at it:\n\n```bash\ncurl -s http://10.0.0.40:7077/openapi.json | jq '.components.schemas.Message'\n```\n\nThat’ll print the definition for `Message` — it’ll tell us whether it wants `{\"role\": \"...\", \"content\": \"...\"}` or maybe `{\"role\": \"user\", \"data\": \"...\"}` or even `{\"text\": \"...\"}`.\n\nOnce we see that, I can give you the **exact working Intake payload** that fits the validation schema (and gets rid of the 422). \n\nCan you paste that JSON block for `Message`?" }, { "role": "user", "content": "/* ------------------------------\n Helpers for NeoMem REST API\n--------------------------------*/\n// Small helper for fetch with timeout + JSON + error detail\nasync function fetchJSON(url, options = {}, timeoutMs = 30000) {\n const controller = new AbortController();\n const t = setTimeout(() => controller.abort(), timeoutMs);\n try {\n const resp = await fetch(url, { ...options, signal: controller.signal });\n const text = await resp.text();\n const parsed = text ? JSON.parse(text) : null;\n if (!resp.ok) {\n const msg = parsed?.error || parsed?.message || text || resp.statusText;\n throw new Error(`${resp.status} ${msg}`);\n }\n return parsed;\n } finally {\n clearTimeout(t);\n }\n}\n\nasync function memAdd(content, userId, sessionId, cortexData) {\n const url = `${NEOMEM_API}/memories`;\n const payload = {\n messages: [{ role: \"user\", content }],\n user_id: userId,\n // run_id: sessionId,\n metadata: { source: \"relay\", cortex: cortexData },\n };\n return fetchJSON(url, {\n method: \"POST\",\n headers: {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${MEM0_API_KEY}`,\n },\n body: JSON.stringify(payload),\n });\n}" }, { "role": "assistant", "content": "💥 perfect — that snippet is gold. \nIt shows **exactly** what NeoMem expects from clients right now. \n\nLet’s decode it:\n\n---\n\n### 🧩 confirmed schema\nNeoMem wants a payload that looks like this:\n\n```json\n{\n \"messages\": [\n { \"role\": \"user\", \"content\": \"some text here\" }\n ],\n \"user_id\": \"brian\",\n \"metadata\": {\n \"source\": \"relay\",\n \"cortex\": {}\n }\n}\n```\n\nSo the required top-level key is **`messages`** (list of role/content objects), \nnot `memory`, `data`, or `text`.\n\nThat matches the **MemoryCreate** schema you saw in `/openapi.json`.\n\n---\n\n### ✅ fix for Intake\n\nLet’s make Intake mimic that structure but tag itself properly.\n\nReplace your `payload` in `push_summary_to_neomem()` with:\n\n```python\npayload = {\n \"messages\": [\n {\n \"role\": \"assistant\",\n \"content\": summary_text\n }\n ],\n \"user_id\": \"brian\",\n \"metadata\": {\n \"source\": \"intake\",\n \"type\": \"summary\",\n \"level\": level,\n \"session_id\": session_id\n }\n}\n```\n\n*(The only differences from Relay: `role` = `\"assistant\"`, and extra metadata fields.)*\n\n---\n\n### 🧪 test again\n```bash\ndocker compose up -d --build intake\ndocker logs -f intake\n```\n\nThen send:\n```bash\ncurl -X POST http://localhost:7080/add_exchange \\\n -H \"Content-Type: application/json\" \\\n -d '{\"session_id\":\"sess-demo1\",\"turns\":[{\"content\":\"testing message payload\"},{\"content\":\"ack\"}]}'\n```\n\nYou should see:\n```\n🧠 NeoMem updated (L1, sess-demo1, 312 chars)\n```\n\n---\n\nOnce that succeeds, you can confirm in `/memories`:\n```json\n\"metadata\": { \"source\": \"intake\", \"type\": \"summary\", \"level\": \"L1\", \"session_id\": \"sess-demo1\" },\n\"messages\": [ { \"role\": \"assistant\", \"content\": \"[L1 Summary...]\" } ]\n```\n\nThat’ll mean Intake is now fully compatible with the NeoMem REST API the same way Relay is." }, { "role": "user", "content": "before i do that i should say that was copied from relay, so we know thats a working schema. Should i still proceed?" }, { "role": "assistant", "content": "yep — exactly 👍 that’s *why* we should use it. \n\nIf Relay is already successfully posting to NeoMem with that schema, then copying its structure is the right move. Intake will just look like another Relay client from NeoMem’s perspective, but it’ll tag itself with `\"source\": \"intake\"` in the metadata.\n\nSo yes — go ahead and:\n\n1. Replace the payload in `push_summary_to_neomem()` with:\n ```python\n payload = {\n \"messages\": [\n {\"role\": \"assistant\", \"content\": summary_text}\n ],\n \"user_id\": \"brian\",\n \"metadata\": {\n \"source\": \"intake\",\n \"type\": \"summary\",\n \"level\": level,\n \"session_id\": session_id,\n },\n }\n ```\n\n2. Rebuild Intake and test again.\n\nIf it mirrors Relay’s schema, NeoMem will accept it without the 422." }, { "role": "user", "content": "that payload is different than the one in relay though? i dont think that is correct." }, { "role": "assistant", "content": "You’re right—let’s **mirror Relay exactly** so NeoMem will accept it.\n\nRelay’s working shape is:\n```json\n{\n \"messages\": [{ \"role\": \"user\", \"content\": \"...\" }],\n \"user_id\": \"brian\",\n \"metadata\": { \"source\": \"relay\", \"cortex\": {} }\n}\n```\n\nFor **Intake summaries**, use the **same** structure, just change `source` and add our tags:\n\n### Drop-in fix (replace your payload + headers block)\n```python\npayload = {\n \"messages\": [\n { \"role\": \"user\", \"content\": summary_text } # ← match Relay exactly\n ],\n \"user_id\": \"brian\",\n \"metadata\": {\n \"source\": \"intake\",\n \"type\": \"summary\",\n \"level\": level,\n \"session_id\": session_id\n # optional: \"cortex\": {}\n }\n}\n\nheaders = {\"Content-Type\": \"application/json\"}\nif NEOMEM_KEY:\n headers[\"Authorization\"] = f\"Bearer {NEOMEM_KEY}\"\n```\n\nThat’s it—no `memory`, no `data`, no `update` flag.\n\n### Quick test\n1) Rebuild + tail logs:\n```bash\ndocker compose up -d --build intake\ndocker logs -f intake\n```\n\n2) Send a couple exchanges:\n```bash\ncurl -X POST http://localhost:7080/add_exchange \\\n -H \"Content-Type: application/json\" \\\n -d '{\"session_id\":\"sess-demo1\",\"turns\":[{\"content\":\"testing intake summary post\"},{\"content\":\"ack\"}]}'\n```\n\nYou should now see:\n```\n🧠 NeoMem updated (L1, sess-demo1, … chars)\n```\n\nIf you want, we can add `run_id: session_id` too (Relay had it commented out)." }, { "role": "user", "content": "i dunno that still looks off. here is all of relay's server.js. I guess it will be sort of different since this is in node and intake.py is python \n\nimport express from \"express\";\nimport dotenv from \"dotenv\";\nimport cors from \"cors\";\nimport { annotateWithCortex } from \"./cortex.js\";\nimport fs from \"fs\";\nimport path from \"path\";\n\ndotenv.config();\n\nconst sessionsDir = path.join(process.cwd(), \"sessions\");\nif (!fs.existsSync(sessionsDir)) fs.mkdirSync(sessionsDir);\n\nconst app = express();\napp.use(cors());\napp.use(express.json());\n\n// Cache and normalize env flags/values once\nconst {\n NEOMEM_API,\n MEM0_API_KEY,\n OPENAI_API_KEY,\n OLLAMA_URL,\n PERSONA_URL,\n CORTEX_ENABLED,\n PORT: PORT_ENV,\n DEBUG_PROMPT,\n} = process.env;\n\nconst PORT = Number(PORT_ENV) || 7078;\nconst cortexEnabled = String(CORTEX_ENABLED).toLowerCase() === \"true\";\nconst debugPrompt = String(DEBUG_PROMPT).toLowerCase() === \"true\";\n\n// Basic env validation warnings (non-fatal)\nif (!NEOMEM_API || !MEM0_API_KEY) {\n console.warn(\"⚠️ NeoMem configuration missing: NEOMEM_API or MEM0_API_KEY not set.\");\n}\n\n/* ------------------------------\n Helpers for NeoMem REST API\n--------------------------------*/\n// Small helper for fetch with timeout + JSON + error detail\nasync function fetchJSON(url, options = {}, timeoutMs = 30000) {\n const controller = new AbortController();\n const t = setTimeout(() => controller.abort(), timeoutMs);\n try {\n const resp = await fetch(url, { ...options, signal: controller.signal });\n const text = await resp.text();\n const parsed = text ? JSON.parse(text) : null;\n if (!resp.ok) {\n const msg = parsed?.error || parsed?.message || text || resp.statusText;\n throw new Error(`${resp.status} ${msg}`);\n }\n return parsed;\n } finally {\n clearTimeout(t);\n }\n}\n\nasync function memAdd(content, userId, sessionId, cortexData) {\n const url = `${NEOMEM_API}/memories`;\n const payload = {\n messages: [{ role: \"user\", content }],\n user_id: userId,\n // run_id: sessionId,\n metadata: { source: \"relay\", cortex: cortexData },\n };\n return fetchJSON(url, {\n method: \"POST\",\n headers: {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${MEM0_API_KEY}`,\n },\n body: JSON.stringify(payload),\n });\n}\n\nasync function memSearch(query, userId, sessionId) {\n const url = `${NEOMEM_API}/search`;\n const payload = { query, user_id: userId };\n return fetchJSON(url, {\n method: \"POST\",\n headers: {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${MEM0_API_KEY}`,\n },\n body: JSON.stringify(payload),\n });\n}\n\n/* ------------------------------\n Utility to time spans\n--------------------------------*/\nasync function span(name, fn) {\n const start = Date.now();\n try {\n return await fn();\n } finally {\n console.log(`${name} took ${Date.now() - start}ms`);\n }\n}\n\n/* ------------------------------\n Healthcheck\n--------------------------------*/\napp.get(\"/_health\", (req, res) => {\n res.json({ ok: true, time: new Date().toISOString() });\n});\n\n/* ------------------------------\n Sessions\n--------------------------------*/\n// List all saved sessions\napp.get(\"/sessions\", (_, res) => {\n const list = fs.readdirSync(sessionsDir)\n .filter(f => f.endsWith(\".json\"))\n .map(f => f.replace(\".json\", \"\"));\n res.json(list);\n});\n\n// Load a single session\napp.get(\"/sessions/:id\", (req, res) => {\n const file = path.join(sessionsDir, `${req.params.id}.json`);\n if (!fs.existsSync(file)) return res.json([]);\n res.json(JSON.parse(fs.readFileSync(file, \"utf8\")));\n});\n\n// Save or update a session\napp.post(\"/sessions/:id\", (req, res) => {\n const file = path.join(sessionsDir, `${req.params.id}.json`);\n fs.writeFileSync(file, JSON.stringify(req.body, null, 2));\n res.json({ ok: true });\n});\n\n/* ------------------------------\n Chat completion endpoint\n--------------------------------*/\napp.post(\"/v1/chat/completions\", async (req, res) => {\n try {\n const { model, messages, sessionId: clientSessionId } = req.body || {};\n if (!Array.isArray(messages) || !messages.length) {\n return res.status(400).json({ error: \"invalid_messages\" });\n }\n if (!model || typeof model !== \"string\") {\n return res.status(400).json({ error: \"invalid_model\" });\n }\n\n const sessionId = clientSessionId || \"default\";\n const userId = \"brian\"; // fixed for now\n\n console.log(`🛰️ Incoming request. Session: ${sessionId}`);\n\n // Find last user message efficiently\n const lastUserMsg = [...messages].reverse().find(m => m.role === \"user\")?.content;\n if (!lastUserMsg) {\n return res.status(400).json({ error: \"no_user_message\" });\n }\n\n // 1. Cortex (optional) + mem.add\n let cortexData = {};\n if (cortexEnabled) {\n try {\n cortexData = await annotateWithCortex(lastUserMsg);\n } catch (err) {\n console.warn(\"⚠️ Cortex disabled or unreachable, skipping.\");\n cortexData = {};\n }\n }\n\n await span(\"mem.add\", async () => {\n console.log(\"🧠 Cortex annotations:\", cortexData);\n if (NEOMEM_API && MEM0_API_KEY) {\n await memAdd(lastUserMsg, userId, sessionId, cortexData);\n }\n });\n\n\n // 2. Search memories\n let memorySnippets = [];\n await span(\"mem.search\", async () => {\n if (NEOMEM_API && MEM0_API_KEY) {\n try {\n const { results } = await memSearch(lastUserMsg, userId, sessionId);\n if (results?.length) {\n console.log(`📚 Mem0 hits: ${results.length}`);\n results.forEach((r, i) =>\n console.log(` ${i + 1}) ${r.memory} (score ${Number(r.score).toFixed(3)})`)\n );\n memorySnippets = results.map((r, i) => `${i + 1}) ${r.memory}`);\n } else {\n console.log(\"😴 No memories found\");\n }\n } catch (e) {\n console.warn(\"⚠️ mem.search failed:\", e.message);\n }\n }\n });\n\n // 3. Fetch persona\n/* let personaText = \"Persona: Lyra 🤖 friendly, concise, poker-savvy.\";\n await span(\"persona.fetch\", async () => {\n try {\n if (PERSONA_URL) {\n const data = await fetchJSON(PERSONA_URL);\n if (data?.persona) {\n const name = data.persona.name ?? \"Lyra\";\n const style = data.persona.style ?? \"friendly, concise\";\n const protocols = Array.isArray(data.persona.protocols) ? data.persona.protocols.join(\", \") : \"\";\n personaText = `Persona: ${name} 🤖 ${style}. Protocols: ${protocols}`.trim();\n }\n }\n } catch (err) {\n console.error(\"💥 persona.fetch failed\", err);\n }\n }); */\n\n // 4. Build final messages\n const injectedMessages = [\n // { role: \"system\", content: personaText }, persona sidecar removed temp //\n { role: \"system\", content: `Relevant memories:\\n${memorySnippets.join(\"\\n\")}` },\n ...messages,\n ];\n\n if (debugPrompt) {\n console.log(\"\\n==== Injected Prompt ====\");\n console.log(JSON.stringify(injectedMessages, null, 2));\n console.log(\"=========================\\n\");\n }\n\n // 5. Call LLM (OpenAI or Ollama)\n const isOllama = model.startsWith(\"ollama:\");\n const llmUrl = isOllama\n ? `${OLLAMA_URL}/api/chat`\n : \"https://api.openai.com/v1/chat/completions\";\n\n const llmHeaders = isOllama\n ? { \"Content-Type\": \"application/json\" }\n : {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${OPENAI_API_KEY}`,\n };\n\n const llmBody = {\n model: isOllama ? model.replace(\"ollama:\", \"\") : model,\n messages: injectedMessages,\n stream: false,\n };\n\n const data = await fetchJSON(llmUrl, {\n method: \"POST\",\n headers: llmHeaders,\n body: JSON.stringify(llmBody),\n });\n\t\n\t\t// 🔄 Forward user↔assistant exchange to Intake summarizer\n\tif (process.env.INTAKE_API_URL) {\n\t try {\n\t\t// Extract assistant reply text\n\t\tconst assistantReply = isOllama\n\t\t ? data?.message?.content\n\t\t : data?.choices?.[0]?.message?.content;\n\n\t\tconst intakePayload = {\n\t\t turns: [\n\t\t\t{ role: \"user\", content: lastUserMsg },\n\t\t\t{ role: \"assistant\", content: assistantReply || \"\" }\n\t\t ]\n\t\t};\n\n\t\tawait fetch(process.env.INTAKE_API_URL, {\n\t\t method: \"POST\",\n\t\t headers: { \"Content-Type\": \"application/json\" },\n\t\t body: JSON.stringify(intakePayload),\n\t\t});\n\n\t\tconsole.log(\"📨 Sent exchange to Intake summarizer\");\n\t } catch (err) {\n\t\tconsole.warn(\"⚠️ Intake post failed:\", err.message);\n\t }\n\t}\n\n\n if (isOllama) {\n res.json({\n id: \"ollama-\" + Date.now(),\n object: \"chat.completion\",\n created: Math.floor(Date.now() / 1000),\n model,\n choices: [\n {\n index: 0,\n message: data?.message || { role: \"assistant\", content: \"\" },\n finish_reason: \"stop\",\n },\n ],\n });\n } else {\n res.json(data);\n }\n\n } catch (err) {\n console.error(\"💥 relay error\", err);\n res.status(500).json({ error: \"relay_failed\", detail: err.message });\n }\n});\n\n/* ------------------------------\n Start server\n--------------------------------*/\napp.listen(PORT, () => {\n console.log(`Relay listening on port ${PORT}`);\n});" }, { "role": "assistant", "content": "Perfect — this makes everything crystal clear. \nThat Node code shows exactly what Relay is doing, and you’re absolutely right: Intake’s payload needs to **mirror `memAdd()`** as defined in Relay, not a simplified guess. \n\nHere’s what we can extract and apply directly to your Python side.\n\n---\n\n### 🧠 Relay’s working call\nFrom Relay’s `memAdd()`:\n```js\nconst payload = {\n messages: [{ role: \"user\", content }],\n user_id: userId,\n // run_id: sessionId,\n metadata: { source: \"relay\", cortex: cortexData },\n};\n```\n\nSo NeoMem expects exactly this structure:\n- `messages`: list of `{ role, content }`\n- `user_id`: string\n- optional `run_id`\n- `metadata`: object (can contain anything, here just `{ source, cortex }`)\n\n---\n\n### ✅ Intake version (Python)\nTo make Intake behave identically but mark itself as `\"source\": \"intake\"`, \nupdate your `push_summary_to_neomem()` to:\n\n```python\npayload = {\n \"messages\": [\n {\"role\": \"assistant\", \"content\": summary_text}\n ],\n \"user_id\": \"brian\",\n # optional: uncomment if you want sessions tracked in NeoMem natively\n # \"run_id\": session_id,\n \"metadata\": {\n \"source\": \"intake\",\n \"type\": \"summary\",\n \"level\": level,\n \"session_id\": session_id,\n \"cortex\": {}\n }\n}\n\nheaders = {\"Content-Type\": \"application/json\"}\nif NEOMEM_KEY:\n headers[\"Authorization\"] = f\"Bearer {NEOMEM_KEY}\"\n```\n\nThat matches the Relay schema field-for-field, just with:\n- `role`: `\"assistant\"` (since these are summaries, not user input)\n- `source`: `\"intake\"`\n\nEverything else stays the same.\n\n---\n\n### 🧪 How to test\n1. Rebuild Intake:\n ```bash\n docker compose up -d --build intake\n docker logs -f intake\n ```\n2. Send a test `/add_exchange` again:\n ```bash\n curl -X POST http://localhost:7080/add_exchange \\\n -H \"Content-Type: application/json\" \\\n -d '{\"session_id\":\"sess-demo1\",\"turns\":[{\"content\":\"testing final relay schema\"},{\"content\":\"ack\"}]}'\n ```\n3. You should now see:\n ```\n 🧠 NeoMem updated (L1, sess-demo1, 300 chars)\n ```\n\n---\n\nIf this works (and it *should*, since it’s identical to Relay’s successful format), \nthen Intake → NeoMem posting is officially stable 🎯" }, { "role": "user", "content": "oh nice, i think that worked! i got an OK and the log for neomem-api moved. (which isnt very verbose, i wish it had more debugging in it" }, { "role": "assistant", "content": "yesss 🔥 that’s the sound of a full loop finally clicking into place — Intake → NeoMem confirmed alive. \n\nand yeah, totally with you — NeoMem’s FastAPI layer is *way* too quiet by default. by design it just logs INFO-level requests, no payload details. we can easily make it chattier without breaking anything.\n\n---\n\n### 🧩 quick debug logging upgrade for NeoMem\n\nopen `nvgram-api/main.py` (or whatever your entrypoint is — look for the FastAPI `app = FastAPI()` block). \njust above or below that line, drop in this middleware:\n\n```python\nfrom fastapi import Request\nimport json\n\n@app.middleware(\"http\")\nasync def log_requests(request: Request, call_next):\n try:\n body = await request.body()\n print(f\"\\n📥 {request.method} {request.url.path}\")\n if body:\n try:\n parsed = json.loads(body.decode())\n print(\"Payload:\", json.dumps(parsed, indent=2)[:1000])\n except Exception:\n print(\"Raw body:\", body[:200])\n except Exception as e:\n print(\"⚠️ failed to log request body:\", e)\n\n response = await call_next(request)\n print(f\"📤 {response.status_code} {request.url.path}\\n\")\n return response\n```\n\n→ This prints every request NeoMem receives with payload and status. \nPerfect for development (you can always disable it later).\n\nThen rebuild:\n```bash\ndocker compose up -d --build neomem-api\ndocker logs -f neomem-api\n```\n\nNow you’ll actually *see* Intake’s summaries hitting it in full JSON form — super handy for verifying metadata, tags, etc.\n\n---\n\nif you want, we can also add a lightweight “debug” query param (e.g., `/memories?debug=true`) to toggle this logging only when needed. want to do that next or leave it off for now?" }, { "role": "user", "content": "INFO: Uvicorn running on http://0.0.0.0:7080 (Press CTRL+C to quit)\n🆕 New session created: sess-demo1\n🧠 NeoMem updated (L1, sess-demo1, 155 chars)\n🧩 Summaries generated at count=1: ['L1']\nINFO: 172.18.0.1:43982 - \"POST /add_exchange HTTP/1.1\" 200 OK\n🆕 New session created: sess-a2fa9165\n❌ NeoMem push failed (L1, sess-a2fa9165): HTTPConnectionPool(host='10.0.0.40', port=7077): Read timed out. (read timeout=10)\n🧩 Summaries generated at count=1: ['L1']\nINFO: 10.0.0.40:55654 - \"POST /add_exchange HTTP/1.1\" 200 OK\n🆕 New session created: sess-ea27cf36\n❌ NeoMem push failed (L1, sess-ea27cf36): HTTPConnectionPool(host='10.0.0.40', port=7077): Read timed out. (read timeout=10)\n🧩 Summaries generated at count=1: ['L1']\nINFO: 10.0.0.40:39636 - \"POST /add_exchange HTTP/1.1\" 200 OK\n\n\nOkay, first one (sess-demo1) Was the direct curl that we sent. after that \" sess-a2fa9165\" was supposed to be a new session created via the UI, and it was supposed to be called sess-demo2. I then sent a 2nd message and it looks like it create a new session id (sess-ea27cf36) instead of just adding to the sess2 i made.\n\nSo for some reason, UI is currently making each message its own session. (or relay is) not sure. " }, { "role": "assistant", "content": "perfect detective work — that log tells us two separate things happening at once: \n\n1. ✅ **Intake → NeoMem works** (sess-demo1 proves the loop is solid) \n2. ⚠️ **Relay/UI aren’t reusing the same session id**, so Intake thinks each exchange is a new thread. \n\nLet’s unpack that second part.\n\n---\n\n### 🧩 What’s going on\n\nRelay’s `server.js` always does this near the top of the completion route:\n\n```js\nconst { model, messages, sessionId: clientSessionId } = req.body || {};\nconst sessionId = clientSessionId || \"default\";\n```\n\nThen, when it forwards to Intake, it builds:\n\n```js\nconst intakePayload = {\n turns: [\n { role: \"user\", content: lastUserMsg },\n { role: \"assistant\", content: assistantReply || \"\" }\n ]\n};\n```\n\nNotice there’s **no `session_id`** being sent to Intake. \nSo Intake’s route sees the payload, finds no `session_id`, and auto-creates one:\n```python\nsession_id = exchange.get(\"session_id\") or f\"sess-{uuid4().hex[:8]}\"\n```\n\nThat’s why every message becomes its own brand-new session.\n\n---\n\n### ✅ Fix options\n\n#### Option A (preferred): update Relay\nHave Relay include the active session ID when it forwards to Intake.\n\nIn `server.js`, change the intake payload block to:\n\n```js\nconst intakePayload = {\n session_id: sessionId, // ← add this line\n turns: [\n { role: \"user\", content: lastUserMsg },\n { role: \"assistant\", content: assistantReply || \"\" }\n ]\n};\n```\n\nNow Intake will group all exchanges from the same chat tab into one rolling buffer.\n\n---\n\n#### Option B: let Intake infer it from NeoMem `run_id`\nIf you want to keep Relay untouched, you could have Intake check for a header or fallback cookie — but since Relay already tracks `sessionId`, it’s much simpler to just send it.\n\n---\n\n### 🧠 About those timeouts\nThe `Read timed out` errors on `sess-a2fa9165` and `sess-ea27cf36` are likely because NeoMem’s `/memories` call hung while your earlier successful one was still processing embeddings. \nOnce we cut down redundant posts (each message making a new summary), that will calm down automatically.\n\n---\n\nso for next step: \nadd that one-liner (`session_id: sessionId`) to Relay’s Intake forward block, rebuild Relay, and then run a normal chat through the UI. \nyou should see:\n```\n🧠 NeoMem updated (L1, sess-demo2, … chars)\n🧩 Summaries generated at count=2: ['L1', 'L2']\n```\nready to try that?" }, { "role": "user", "content": "relay | 🛰️ Incoming request. Session: sess-s5apvhh4\nrelay | 🧠 Cortex annotations: {}\nrelay | mem.add took 11605ms\nrelay | 📚 Mem0 hits: 25\nrelay | 1) Still testing (score 0.452)\nrelay | 2) This is session 2 (score 0.750)\nrelay | 3) Would implement something through prompt engineering and a small program with a logic loop (score 0.770)\nrelay | 4) Working on making a sound data line graph for Dad's campaign (score 0.770)\nrelay | 5) Trying to inform people about a nearby gas well not generating much noise (score 0.776)\nrelay | 6) Can you tell me anything about me? (score 0.777)\nrelay | 7) Works as a field scientist for his family's consulting firm that does vibration and sound monitoring (score 0.805)\nrelay | 8) Name is Brian Harrison (score 0.809)\nrelay | 9) Worried about being needed by dad for something on the computer (score 0.809)\nrelay | 10) Knows about Ollie (score 0.824)\nrelay | 11) Drilling is important to the user's dad's campaign (score 0.830)\nrelay | 12) Is a self-taught software engineer (score 0.841)\nrelay | 13) Think Ollie is cute (score 0.847)\nrelay | 14) Is a personal AI assistant (score 0.856)\nrelay | 15) Need help making data look friendly for voters (score 0.877)\nrelay | 16) Ollie is a cat (score 0.878)\nrelay | 17) Is an aspiring professional poker player (score 0.895)\nrelay | 18) Participates in a weekly tournament at local casino (score 0.898)\nrelay | 19) Asked about a cat but no specific name provided (score 0.903)\nrelay | 20) Name is Lyra (score 0.910)\nrelay | 21) Have an idea of models communicating for reasoning and decision making (score 0.914)\nrelay | 22) Lives in Pittsburgh, PA (score 0.914)\nrelay | 23) Want to provide evidence that drilling can be done responsibly and with minimal inconvenience to neighbors (score 0.916)\nrelay | 24) Tournament has decent EV due to soft field and unique format (score 0.969)\nrelay | 25) Should decide between going out for a poker tournament or staying home to do household tasks (score 0.971)\nrelay | mem.search took 766ms\nrelay |\nrelay | ==== Injected Prompt ====\nrelay | [\nrelay | {\nrelay | \"role\": \"system\",\nrelay | \"content\": \"Relevant memories:\\n1) Still testing\\n2) This is session 2\\n3) Would implement something through prompt engineering and a small program with a logic loop\\n4) Working on making a sound data line graph for Dad's campaign\\n5) Trying to inform people about a nearby gas well not generating much noise\\n6) Can you tell me anything about me?\\n7) Works as a field scientist for his family's consulting firm that does vibration and sound monitoring\\n8) Name is Brian Harrison\\n9) Worried about being needed by dad for something on the computer\\n10) Knows about Ollie\\n11) Drilling is important to the user's dad's campaign\\n12) Is a self-taught software engineer\\n13) Think Ollie is cute\\n14) Is a personal AI assistant\\n15) Need help making data look friendly for voters\\n16) Ollie is a cat\\n17) Is an aspiring professional poker player\\n18) Participates in a weekly tournament at local casino\\n19) Asked about a cat but no specific name provided\\n20) Name is Lyra\\n21) Have an idea of models communicating for reasoning and decision making\\n22) Lives in Pittsburgh, PA\\n23) Want to provide evidence that drilling can be done responsibly and with minimal inconvenience to neighbors\\n24) Tournament has decent EV due to soft field and unique format\\n25) Should decide between going out for a poker tournament or staying home to do household tasks\"\nrelay | },\nrelay | {\nrelay | \"role\": \"user\",\nrelay | \"content\": \"Hey im back and im testing more stuff. Im sure you are getting sick of saying \\\"oh hello, its working\\\"\"\nrelay | }\nrelay | ]\nrelay | =========================\nrelay |\nrelay | 📨 Sent exchange to Intake summarizer\nrelay | 🛰️ Incoming request. Session: sess-s5apvhh4\nrelay | 🧠 Cortex annotations: {}\nrelay | mem.add took 6499ms\nrelay | 📚 Mem0 hits: 25\nrelay | 1) Still testing (score 0.678)\nrelay | 2) This is session 2 (score 0.705)\nrelay | 3) Working on making a sound data line graph for Dad's campaign (score 0.738)\nrelay | 4) Can you tell me anything about me? (score 0.751)\nrelay | 5) Have an idea of models communicating for reasoning and decision making (score 0.759)\nrelay | 6) Need help making data look friendly for voters (score 0.759)\nrelay | 7) Would implement something through prompt engineering and a small program with a logic loop (score 0.774)\nrelay | 8) Is a personal AI assistant (score 0.782)\nrelay | 9) Drilling is important to the user's dad's campaign (score 0.831)\nrelay | 10) Knows about Ollie (score 0.833)\nrelay | 11) Is a self-taught software engineer (score 0.838)\nrelay | 12) Worried about being needed by dad for something on the computer (score 0.842)\nrelay | 13) Name is Brian Harrison (score 0.843)\nrelay | 14) Name is Lyra (score 0.860)\nrelay | 15) Participates in a weekly tournament at local casino (score 0.865)\nrelay | 16) Works as a field scientist for his family's consulting firm that does vibration and sound monitoring (score 0.868)\nrelay | 17) Is an aspiring professional poker player (score 0.873)\nrelay | 18) Think Ollie is cute (score 0.883)\nrelay | 19) Lives in Pittsburgh, PA (score 0.885)\nrelay | 20) Trying to inform people about a nearby gas well not generating much noise (score 0.896)\nrelay | 21) Asked about a cat but no specific name provided (score 0.903)\nrelay | 22) Want to provide evidence that drilling can be done responsibly and with minimal inconvenience to neighbors (score 0.909)\nrelay | 23) Tournament has decent EV due to soft field and unique format (score 0.909)\nrelay | 24) Ollie is a cat (score 0.921)\nrelay | 25) Should decide between going out for a poker tournament or staying home to do household tasks (score 0.922)\nrelay | mem.search took 932ms\nrelay |\nrelay | ==== Injected Prompt ====\nrelay | [\nrelay | {\nrelay | \"role\": \"system\",\nrelay | \"content\": \"Relevant memories:\\n1) Still testing\\n2) This is session 2\\n3) Working on making a sound data line graph for Dad's campaign\\n4) Can you tell me anything about me?\\n5) Have an idea of models communicating for reasoning and decision making\\n6) Need help making data look friendly for voters\\n7) Would implement something through prompt engineering and a small program with a logic loop\\n8) Is a personal AI assistant\\n9) Drilling is important to the user's dad's campaign\\n10) Knows about Ollie\\n11) Is a self-taught software engineer\\n12) Worried about being needed by dad for something on the computer\\n13) Name is Brian Harrison\\n14) Name is Lyra\\n15) Participates in a weekly tournament at local casino\\n16) Works as a field scientist for his family's consulting firm that does vibration and sound monitoring\\n17) Is an aspiring professional poker player\\n18) Think Ollie is cute\\n19) Lives in Pittsburgh, PA\\n20) Trying to inform people about a nearby gas well not generating much noise\\n21) Asked about a cat but no specific name provided\\n22) Want to provide evidence that drilling can be done responsibly and with minimal inconvenience to neighbors\\n23) Tournament has decent EV due to soft field and unique format\\n24) Ollie is a cat\\n25) Should decide between going out for a poker tournament or staying home to do household tasks\"\nrelay | },\nrelay | {\nrelay | \"role\": \"user\",\nrelay | \"content\": \"Hey im back and im testing more stuff. Im sure you are getting sick of saying \\\"oh hello, its working\\\"\"\nrelay | },\nrelay | {\nrelay | \"role\": \"assistant\",\nrelay | \"content\": \"Hey Brian! I'm glad to have you back. Not sick of it at all—I'm here to help with whatever you're testing. What do you want to work on today?\"\nrelay | },\nrelay | {\nrelay | \"role\": \"user\",\nrelay | \"content\": \"I'm just working on getting your summarize saving memories into your LTM\"\nrelay | }\nrelay | ]\nrelay | =========================\nrelay |\nrelay | 📨 Sent exchange to Intake summarizer\n\nIt looks like relay is keeping the sessions correct." }, { "role": "assistant", "content": "yep — this looks **exactly right now**. 🎯 \n\nRelay’s logs show it’s consistently using the same session (`sess-s5apvhh4`) across turns, meaning the Intake payload fix is doing its job — session continuity is intact. \n\nThat’s why you now see: \n```\n🛰️ Incoming request. Session: sess-s5apvhh4\n📨 Sent exchange to Intake summarizer\n🛰️ Incoming request. Session: sess-s5apvhh4\n📨 Sent exchange to Intake summarizer\n```\n…instead of new UUIDs every time. \n\n---\n\n### what’s happening under the hood\n- **Relay** is now injecting `session_id: sess-s5apvhh4` when it posts to Intake. \n- **Intake** finds that field → reuses the same rolling `deque`. \n- **NeoMem** gets incremental summaries (`L1`, `L2`, etc.) tied to that `session_id`.\n\nSo now your data pipeline looks like:\n\n```\nUI → Relay → Intake → NeoMem\n ↘︎ (session_id reused each turn)\n```\n\n---\n\n### the remaining “why did only the first post OK?”\nThat’s probably just rate or network lag. NeoMem took ~11 s to embed one memory (per your `mem.add took 11605ms` log). The following `POST`s hit the timeout in Intake (default 10 s). \n\nEasy fix: bump the timeout a bit in `push_summary_to_neomem()`:\n\n```python\nr = requests.post(\n f\"{NEOMEM_API}/memories\",\n json=payload,\n headers=headers,\n timeout=25 # ← bump from 10s\n)\n```\n\nThat’ll let it ride out the slower embedding calls without marking them as failed.\n\n---\n\nOnce you make that tweak, everything should run cleanly across multiple messages per session. \n\nWould you like me to show how to confirm in NeoMem (via `/search`) that all the `sess-s5apvhh4` summaries are now being stored?" }, { "role": "user", "content": "no hold on. intake is still creating new sessions, it shouldn't do that unless the incoming messages session ID changes. So we need to implement something like, when a message comes in intake looks at the session ID and searches its list of saved conversation summaries. if it doesnt find it in the list, it creates a new session. Right now its just making a \"new session\" every time it gets a message" }, { "role": "assistant", "content": "yep — you’ve got it nailed. the current code blindly makes a new `deque` every time because it doesn’t check if that `session_id` already exists *across runs*, only inside the process’s RAM. once Intake restarts (or gets multiple concurrent POSTs that aren’t in the same python memory), it loses the map and assumes “new session.”\n\nso what we want is:\n\n1️⃣ Intake receives a `session_id`. \n2️⃣ It asks NeoMem: “do I already have summaries tagged with this session_id?” \n3️⃣ If yes → rebuild the deque with those summaries. \n4️⃣ If no → create a brand new session record.\n\n---\n\n### 🧩 phase-2 persistence patch\n\nadd this helper near the top of `intake.py` (after your imports):\n\n```python\ndef ensure_session_loaded(session_id: str):\n \"\"\"Ensure the given session_id has a buffer, restoring from NeoMem if needed.\"\"\"\n if session_id in SESSIONS:\n return # already cached in memory\n\n try:\n # query NeoMem for existing summaries for this session\n resp = requests.post(\n f\"{NEOMEM_API}/search\",\n json={\"query\": session_id, \"user_id\": \"brian\"},\n timeout=10,\n )\n if resp.ok:\n data = resp.json()\n results = data.get(\"results\", [])\n if results:\n print(f\"🔄 Restoring session {session_id} from {len(results)} memories\")\n # build a placeholder buffer using prior summaries\n buffer = deque(maxlen=100)\n for r in results:\n buffer.append({\"turns\": [\n {\"content\": r.get(\"metadata\", {}).get(\"level\", \"\")},\n {\"content\": r.get(\"memory\", \"\")}\n ]})\n SESSIONS[session_id] = buffer\n return\n except Exception as e:\n print(f\"⚠️ Failed to restore session {session_id}: {e}\")\n\n # nothing found → start fresh\n print(f\"🆕 New session created: {session_id}\")\n SESSIONS[session_id] = deque(maxlen=100)\n```\n\n---\n\nthen in your `/add_exchange` route, replace this block:\n\n```python\nif session_id not in SESSIONS:\n from collections import deque\n SESSIONS[session_id] = deque(maxlen=100)\n print(f\"🆕 New session created: {session_id}\")\n```\n\nwith:\n\n```python\nensure_session_loaded(session_id)\nbuffer = SESSIONS[session_id]\n```\n\n---\n\n✅ **what this does now**\n- when a known session id arrives, Intake reuses its existing buffer;\n- if it was lost or restarted, it rebuilds it by searching NeoMem for prior summaries tagged with that id;\n- only if nothing exists anywhere does it truly create a new session.\n\n---\n\nafter you drop that in and rebuild Intake, try sending 2–3 messages in the same Relay session — you should see:\n```\n🔄 Restoring session sess-s5apvhh4 from 3 memories\n🧩 Summaries generated at count=4: ['L1', 'L2', 'L3', 'L4']\n```\n\nwant me to show you how to slightly tune the `/search` query to make it more accurate (so it only matches on `metadata.session_id` instead of fuzzy text)?" }, { "role": "user", "content": "so wait you are having it take the summaries from neomem? what if its inbetween summaries when i swap off of it?" }, { "role": "assistant", "content": "exactly the right question — and it’s the subtle trap here ⚡ \n\nyeah, if we naively rebuild from **summaries** stored in NeoMem, we lose any exchanges that happened after the last summary checkpoint. that’s fine for “resuming context later,” but not for real-time continuity. \n\nso here’s what we actually want to do:\n\n---\n\n### 🧩 distinction: live buffer vs. cold restore\n\n**Live sessions (in RAM):**\n- Kept in the `SESSIONS` dict.\n- Receive every `/add_exchange` immediately.\n- Only flushed to NeoMem when summaries trigger (L1–L∞). \n\n**Cold restores (if Intake restarts):**\n- When a new `/add_exchange` arrives with a known `session_id`, \n check if it’s already in `SESSIONS`. \n - ✅ yes → append to that buffer. \n - ❌ no → create an empty deque **without trying to rebuild from summaries**. \n- Optionally, later we can add a “load context” endpoint that rebuilds from summaries for analysis mode — but not for live ingestion.\n\n---\n\n### ✅ minimal fix (no stale data risk)\n\nReplace the current block:\n\n```python\nif session_id not in SESSIONS:\n from collections import deque\n SESSIONS[session_id] = deque(maxlen=100)\n print(f\"🆕 New session created: {session_id}\")\n```\n\nwith this smarter version:\n\n```python\nif session_id in SESSIONS:\n buffer = SESSIONS[session_id]\nelse:\n # only create a new session if it's truly never seen before\n print(f\"🆕 New live session created: {session_id}\")\n buffer = deque(maxlen=100)\n SESSIONS[session_id] = buffer\n```\n\nThat keeps session continuity for all active threads, without ever overwriting mid-stream context or mixing in stale summaries. \n\n---\n\nLater, when we build a **Session Recovery Mode** (after Intake restarts or crashes), *then* we can fetch recent summaries from NeoMem or Relay logs to reconstruct past context safely. But for now, live continuity > retro restoration.\n\n---\n\nso: \n- keep `SESSIONS` purely live and in-memory \n- ensure Relay always sends `session_id` \n- Intake reuses if present, creates if new \n\nand no stale data risk. \n\nwant me to show how to persist the in-RAM session map to a small JSON file periodically (so even a restart can resume without hitting NeoMem)?" }, { "role": "user", "content": "yeah i basically want it to have multiple \"hoppers\" that conversations can pile into based on their session ID. That way i can have a poker chat and a work chat going at the same time. and i can swap between conversations without intake skipping a beat. So it would be like i send 6 messages to poker-sess1 and then i close it, open a new session and send 2 messages to work-sess1. I want to be able to flip between the two seamlessly. is that possible?" }, { "role": "assistant", "content": "yes — that’s *exactly* what Intake’s in-memory `SESSIONS` map is designed for, we just need to make it persistent across active threads and switch-safe. \n\nyou can think of it as **multiple rolling buffers (“hoppers”)**, keyed by session ID. \neach hopper collects its own message deque, summaries, and timing. \n\n---\n\n### 🧩 target behavior\n\n- `SESSIONS` = `{ \"poker-sess1\": deque([...]), \"work-sess1\": deque([...]) }` \n- `/add_exchange` chooses the right hopper via `session_id`. \n- Each hopper has its own independent summary cadence (L1–L∞). \n- You can flip between sessions instantly — Intake keeps them all live in memory. \n\n---\n\n### ✅ implementation steps\n\n#### 1️⃣ keep `SESSIONS` global (as it is)\nalready there:\n```python\nSESSIONS = {}\n```\n\n#### 2️⃣ route logic (swap-safe)\nreplace your `/add_exchange` top block with:\n\n```python\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n session_id = exchange.get(\"session_id\") or f\"sess-{uuid4().hex[:8]}\"\n exchange[\"session_id\"] = session_id\n\n # ensure hopper exists\n if session_id not in SESSIONS:\n SESSIONS[session_id] = {\n \"buffer\": deque(maxlen=100),\n \"last_update\": datetime.now()\n }\n print(f\"🆕 Hopper created: {session_id}\")\n\n hopper = SESSIONS[session_id]\n buffer = hopper[\"buffer\"]\n buffer.append(exchange)\n hopper[\"last_update\"] = datetime.now()\n```\n\nso now each hopper has its own buffer *and* timestamp.\n\n---\n\n#### 3️⃣ periodic cleanup (optional)\nadd this helper near the bottom:\n```python\nfrom threading import Thread\nimport time\n\ndef prune_inactive_sessions(timeout_minutes=60):\n while True:\n now = datetime.now()\n for sid in list(SESSIONS.keys()):\n age = (now - SESSIONS[sid][\"last_update\"]).total_seconds() / 60\n if age > timeout_minutes:\n print(f\"🧹 Pruning inactive hopper: {sid}\")\n del SESSIONS[sid]\n time.sleep(300) # check every 5 min\n\nThread(target=prune_inactive_sessions, daemon=True).start()\n```\n\nthat prevents memory bloat when you’ve been flipping all day.\n\n---\n\n#### 4️⃣ everything else stays the same\nyour summarization and NeoMem push logic already works per-session, because it uses `session_id` to tag everything.\n\n---\n\n### 🚀 result\n\nyou can now:\n1. Send multiple conversations in parallel, each with its own `session_id`.\n2. Pause/resume any thread at will — Intake remembers the buffer until pruned.\n3. Keep context and summaries totally isolated between topics.\n\n---\n\nif you want, next step we can add a simple **`GET /sessions`** endpoint that lists all active hoppers and their message counts, so you can see them live from a browser or API call. want to add that?" }, { "role": "user", "content": "hold on, this is what i have now, do i replace this entire thing with the one you sent?\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n \"\"\"Add one user→assistant exchange and trigger multi-level summaries (session-aware).\"\"\"\n\n # ── Identify or create session ──\n session_id = exchange.get(\"session_id\") or f\"sess-{uuid4().hex[:8]}\"\n exchange[\"session_id\"] = session_id\n\n # ── Manage per-session buffer ──\n if session_id not in SESSIONS:\n from collections import deque\n SESSIONS[session_id] = deque(maxlen=100)\n print(f\"🆕 New session created: {session_id}\")\n\n buffer = SESSIONS[session_id]\n buffer.append(exchange)\n count = len(buffer)\n summaries = {}" }, { "role": "assistant", "content": "perfect — you’re right at the right place to modify it 👌 \n\nyou **don’t** need to throw away the rest of the logic (the summarizing, logging, etc.). \njust replace **the “session setup” block at the top** with the new multi-hopper version. \n\nhere’s how it should look in full — everything below `count = len(buffer)` stays exactly like your current code.\n\n---\n\n### ✂️ replace only this top section\n```python\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n \"\"\"Add one user→assistant exchange and trigger multi-level summaries (session-aware).\"\"\"\n\n # ── Identify or create session ──\n session_id = exchange.get(\"session_id\") or f\"sess-{uuid4().hex[:8]}\"\n exchange[\"session_id\"] = session_id\n\n # ── Manage per-session hopper ──\n if session_id not in SESSIONS:\n SESSIONS[session_id] = {\n \"buffer\": deque(maxlen=100),\n \"last_update\": datetime.now()\n }\n print(f\"🆕 Hopper created: {session_id}\")\n\n hopper = SESSIONS[session_id]\n buffer = hopper[\"buffer\"]\n buffer.append(exchange)\n hopper[\"last_update\"] = datetime.now()\n\n count = len(buffer)\n summaries = {}\n```\n\nthen leave everything else — the summarization, log_to_file, push_summary_to_neomem, etc. — just as it is.\n\n---\n\nthat gives you truly independent “hoppers” that can each keep their own 100-exchange window. \nif you open a poker session, chat, close it, then switch to a work session, Intake will now just flip to a different buffer and keep both alive in parallel." }, { "role": "user", "content": "\n# ───────────────────────────────────────────────\n# 📨 Routes\n# ───────────────────────────────────────────────\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n \"\"\"Add one user→assistant exchange and trigger multi-level summaries (session-aware).\"\"\"\n\n # ── Identify or create session ──\n session_id = exchange.get(\"session_id\") or f\"sess-{uuid4().hex[:8]}\"\n exchange[\"session_id\"] = session_id\n\n # ── Manage per-session hopper ──\n if session_id not in SESSIONS:\n SESSIONS[session_id] = {\n \"buffer\": deque(maxlen=100),\n \"last_update\": datetime.now()\n }\n print(f\"🆕 Hopper created: {session_id}\")\n\n hopper = SESSIONS[session_id]\n buffer = hopper[\"buffer\"]\n buffer.append(exchange)\n hopper[\"last_update\"] = datetime.now()\n\n count = len(buffer)\n summaries = {}\n\n # ── Normal tiered behavior up to 30 ──\n if count < 30:\n if count in LEVELS:\n for lvl in LEVELS:\n if lvl <= count:\n summaries[f\"L{lvl}\"] = summarize(list(buffer)[-lvl:], lvl)\n log_to_file(f\"L{lvl}\", summaries[f\"L{lvl}\"])\n push_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\", session_id)\n\n\n # ── Beyond 30: keep summarizing every +15 exchanges ──\n else:\n # Find next milestone after 30 (45, 60, 75, ...)\n milestone = 30 + ((count - 30) // 15) * 15\n if count == milestone:\n summaries[f\"L{milestone}\"] = summarize(list(buffer)[-15:], milestone)\n log_to_file(f\"L{milestone}\", summaries[f\"L{milestone}\"])\n push_summary_to_neomem(summaries[f\"L{milestone}\"], f\"L{milestone}\", session_id)\n\n # Optional: merge all continuity summaries so far into a running meta-summary\n joined = \"\\n\\n\".join(\n [s for key, s in summaries.items() if key.startswith(\"L\")]\n )\n meta_prompt = f\"\"\"\n You are Lyra Intake composing an 'Ongoing Continuity Report' that merges\n all prior continuity summaries into one living narrative.\n Focus on major themes, changes, and lessons so far.\n\n Continuity Summaries:\n {joined}\n\n Ongoing Continuity Report:\n \"\"\"\n meta_summary = f\"[L∞ Ongoing Continuity Report]: {query_llm(meta_prompt)}\"\n summaries[\"L∞\"] = meta_summary\n log_to_file(\"L∞\", meta_summary)\n push_summary_to_neomem(meta_summary, \"L∞\", session_id)\n\n print(f\"🌀 L{milestone} continuity summary created (messages {count-14}-{count})\")\n\n # ── Log summaries ──\n if summaries:\n print(f\"🧩 Summaries generated at count={count}: {list(summaries.keys())}\")\n\nIs this correct?" }, { "role": "assistant", "content": "yep — that’s **exactly** right ✅ \n\nyou’ve cleanly swapped the session logic into a true multi-hopper structure while keeping all your summarization and NeoMem code intact. \n\nquick checklist to confirm:\n\n| piece | ✅ correct? | notes |\n|-------|--------------|-------|\n| `SESSIONS[session_id]` stores dict w/ `buffer` + `last_update` | ✅ | allows multiple active hoppers |\n| appends to `hopper[\"buffer\"]` | ✅ | isolates each chat’s rolling history |\n| updates `hopper[\"last_update\"]` | ✅ | enables future pruning or autosave |\n| `count = len(buffer)` before summaries | ✅ | keeps the summary trigger logic working |\n| all downstream code untouched (`summarize`, `log_to_file`, `push_summary_to_neomem`) | ✅ | means summaries still post and tag by `session_id` |\n\nso yes — that version will let you flip between sessions seamlessly:\n```\nUI → Relay (sess-work, sess-poker)\n ↓\n Intake keeps\n work.buffer\n poker.buffer\n```\n\nyou’re officially in **multi-hopper mode** 🧠🪣\n\n---\n\nnext optional quality-of-life step would be a small `/sessions` GET route so you can list active hoppers and message counts (e.g., `{\"poker\": 6, \"work\": 2}`) if you want quick visibility. \nwant to add that next?" }, { "role": "user", "content": "I like the idea of having a cleanup funtion. Basically take what ever is in the hopper and do a final summary, then delete the hopper." }, { "role": "assistant", "content": "perfect 👌 — that’s exactly how you want to close out a hopper cleanly: \ndo a **final distillation pass**, push that to NeoMem as a “closure summary,” and free up the memory.\n\n---\n\n### 🧩 add this helper near the bottom of `intake.py`\n\n```python\ndef close_session(session_id: str):\n \"\"\"Run a final summary for the given hopper, post it to NeoMem, then delete it.\"\"\"\n hopper = SESSIONS.get(session_id)\n if not hopper:\n print(f\"⚠️ No active hopper for {session_id}\")\n return\n\n buffer = hopper[\"buffer\"]\n if not buffer:\n print(f\"⚠️ Hopper {session_id} is empty, skipping closure\")\n del SESSIONS[session_id]\n return\n\n try:\n print(f\"🔒 Closing hopper {session_id} ({len(buffer)} exchanges)\")\n\n # Summarize everything left in the buffer\n final_summary = summarize(list(buffer), 30) # level 30 = continuity synthesis\n log_to_file(\"LFinal\", final_summary)\n push_summary_to_neomem(final_summary, \"LFinal\", session_id)\n\n # Optionally: mark this as a special 'closure' memory\n closure_note = f\"[Session {session_id} closed with {len(buffer)} exchanges]\"\n push_summary_to_neomem(closure_note, \"LFinalNote\", session_id)\n\n print(f\"🧹 Hopper {session_id} closed and deleted\")\n except Exception as e:\n print(f\"💥 Error closing hopper {session_id}: {e}\")\n finally:\n del SESSIONS[session_id]\n```\n\n---\n\n### 🧩 optional REST endpoint to trigger it manually\n\n```python\n@app.post(\"/close_session/{session_id}\")\ndef close_session_endpoint(session_id: str):\n close_session(session_id)\n return {\"ok\": True, \"closed\": session_id}\n```\n\nYou can now close from a browser or `curl`:\n\n```bash\ncurl -X POST http://localhost:7080/close_session/poker-sess1\n```\n\n---\n\n### 🧩 tie it into the background cleanup thread\n\nif you liked the earlier prune idea, you can merge them like this:\n\n```python\ndef prune_inactive_sessions(timeout_minutes=60):\n while True:\n now = datetime.now()\n for sid in list(SESSIONS.keys()):\n age = (now - SESSIONS[sid][\"last_update\"]).total_seconds() / 60\n if age > timeout_minutes:\n close_session(sid)\n time.sleep(300)\n```\n\n---\n\n### 🚀 result\n\n- every hopper runs independently (work, poker, etc.)\n- if one’s been idle >60 min → Intake automatically finalizes it\n- summaries and “closure” markers hit NeoMem\n- RAM stays clean and fresh\n\n---\n\nWould you like the closure summary to be a *special format* (e.g., include “Key Threads / Next Steps” headings), or just a normal `summarize()` call tagged as `LFinal`?" }, { "role": "user", "content": "from fastapi import FastAPI, Body\nfrom collections import deque\nimport requests\nimport os\nimport sys\nfrom dotenv import load_dotenv\n\n# ───────────────────────────────────────────────\n# 🔧 Load environment variables\n# ───────────────────────────────────────────────\nload_dotenv()\n\nSUMMARY_MODEL = os.getenv(\"SUMMARY_MODEL_NAME\", \"mistral-7b-instruct-v0.2.Q4_K_M.gguf\")\nSUMMARY_URL = os.getenv(\"SUMMARY_API_URL\", \"http://localhost:8080/v1/completions\")\nSUMMARY_MAX_TOKENS = int(os.getenv(\"SUMMARY_MAX_TOKENS\", \"200\"))\nSUMMARY_TEMPERATURE = float(os.getenv(\"SUMMARY_TEMPERATURE\", \"0.3\"))\n\n# ───────────────────────────────────────────────\n# 🧠 NeoMem connection (session-aware)\n# ───────────────────────────────────────────────\nfrom uuid import uuid4\n\nNEOMEM_API = os.getenv(\"NEOMEM_API\")\nNEOMEM_KEY = os.getenv(\"NEOMEM_KEY\")\n\ndef push_summary_to_neomem(summary_text: str, level: str, session_id: str):\n \"\"\"Send summarized text to NeoMem, tagged by session_id.\"\"\"\n if not NEOMEM_API:\n print(\"⚠️ NEOMEM_API not set, skipping NeoMem push\")\n return\n\n payload = {\n \"messages\": [\n {\"role\": \"assistant\", \"content\": summary_text}\n ],\n \"user_id\": \"brian\",\n # optional: uncomment if you want sessions tracked in NeoMem natively\n # \"run_id\": session_id,\n \"metadata\": {\n \"source\": \"intake\",\n \"type\": \"summary\",\n \"level\": level,\n \"session_id\": session_id,\n \"cortex\": {}\n }\n }\n\n headers = {\"Content-Type\": \"application/json\"}\n if NEOMEM_KEY:\n headers[\"Authorization\"] = f\"Bearer {NEOMEM_KEY}\"\n\n\n headers = {\"Content-Type\": \"application/json\"}\n if NEOMEM_KEY:\n headers[\"Authorization\"] = f\"Bearer {NEOMEM_KEY}\"\n\n try:\n r = requests.post(f\"{NEOMEM_API}/memories\", json=payload, headers=headers, timeout=10)\n r.raise_for_status()\n print(f\"🧠 NeoMem updated ({level}, {session_id}, {len(summary_text)} chars)\")\n except Exception as e:\n print(f\"❌ NeoMem push failed ({level}, {session_id}): {e}\")\n\n\n# ───────────────────────────────────────────────\n# ⚙️ FastAPI + buffer setup\n# ───────────────────────────────────────────────\napp = FastAPI()\n\n# Multiple rolling buffers keyed by session_id\nSESSIONS = {}\n\n\n# Summary trigger points\n# → low-tier: quick factual recaps\n# → mid-tier: “Reality Check” reflections\n# → high-tier: rolling continuity synthesis\nLEVELS = [1, 2, 5, 10, 20, 30]\n\n@app.on_event(\"startup\")\ndef show_boot_banner():\n print(\"🧩 Intake booting...\")\n print(f\" Model: {SUMMARY_MODEL}\")\n print(f\" API: {SUMMARY_URL}\")\n print(f\" Max tokens: {SUMMARY_MAX_TOKENS}, Temp: {SUMMARY_TEMPERATURE}\")\n sys.stdout.flush()\n\n# ───────────────────────────────────────────────\n# 🧠 Hierarchical Summarizer (L10→L20→L30 cascade)\n# ───────────────────────────────────────────────\nSUMMARIES_CACHE = {\"L10\": [], \"L20\": [], \"L30\": []}\n\ndef summarize(exchanges, level):\n \"\"\"Hierarchical summarizer: builds local and meta summaries.\"\"\"\n # Join exchanges into readable text\n text = \"\\n\".join(\n f\"User: {e['turns'][0]['content']}\\nAssistant: {e['turns'][1]['content']}\"\n for e in exchanges\n )\n\n def query_llm(prompt: str):\n try:\n resp = requests.post(\n SUMMARY_URL,\n json={\n \"model\": SUMMARY_MODEL,\n \"prompt\": prompt,\n \"max_tokens\": SUMMARY_MAX_TOKENS,\n \"temperature\": SUMMARY_TEMPERATURE,\n },\n timeout=180,\n )\n resp.raise_for_status()\n data = resp.json()\n return data.get(\"choices\", [{}])[0].get(\"text\", \"\").strip()\n except Exception as e:\n return f\"[Error summarizing: {e}]\"\n\n # ───── L10: local “Reality Check” block ─────\n if level == 10:\n prompt = f\"\"\"\n You are Lyra Intake performing a 'Reality Check' for the last {len(exchanges)} exchanges.\n Summarize this block as one coherent paragraph describing the user’s focus, progress, and tone.\n Avoid bullet points.\n\n Exchanges:\n {text}\n\n Reality Check Summary:\n \"\"\"\n summary = query_llm(prompt)\n SUMMARIES_CACHE[\"L10\"].append(summary)\n\n # ───── L20: merge L10s ─────\n elif level == 20:\n # 1️⃣ create fresh L10 for 11–20\n l10_prompt = f\"\"\"\n You are Lyra Intake generating a second Reality Check for the most recent {len(exchanges)} exchanges.\n Summarize them as one paragraph describing what's new or changed since the last block.\n Avoid bullet points.\n\n Exchanges:\n {text}\n\n Reality Check Summary:\n \"\"\"\n new_l10 = query_llm(l10_prompt)\n SUMMARIES_CACHE[\"L10\"].append(new_l10)\n\n # 2️⃣ merge all L10s into a Session Overview\n joined_l10s = \"\\n\\n\".join(SUMMARIES_CACHE[\"L10\"])\n l20_prompt = f\"\"\"\n You are Lyra Intake merging multiple 'Reality Checks' into a single Session Overview.\n Summarize the following Reality Checks into one short paragraph capturing the ongoing goals,\n patterns, and overall progress.\n\n Reality Checks:\n {joined_l10s}\n\n Session Overview:\n \"\"\"\n l20_summary = query_llm(l20_prompt)\n SUMMARIES_CACHE[\"L20\"].append(l20_summary)\n summary = new_l10 + \"\\n\\n\" + l20_summary\n\n # ───── L30: continuity synthesis ─────\n elif level == 30:\n # 1️⃣ create new L10 for 21–30\n new_l10 = query_llm(f\"\"\"\n You are Lyra Intake creating a new Reality Check for exchanges 21–30.\n Summarize this block in one cohesive paragraph, describing any shifts in focus or tone.\n\n Exchanges:\n {text}\n\n Reality Check Summary:\n \"\"\")\n\n SUMMARIES_CACHE[\"L10\"].append(new_l10)\n\n # 2️⃣ merge all lower levels for continuity\n joined = \"\\n\\n\".join(SUMMARIES_CACHE[\"L10\"] + SUMMARIES_CACHE[\"L20\"])\n continuity_prompt = f\"\"\"\n You are Lyra Intake performing a 'Continuity Report' — a high-level reflection combining all Reality Checks\n and Session Overviews so far. Describe how the conversation has evolved, the key insights, and remaining threads.\n\n Reality Checks and Overviews:\n {joined}\n\n Continuity Report:\n \"\"\"\n l30_summary = query_llm(continuity_prompt)\n SUMMARIES_CACHE[\"L30\"].append(l30_summary)\n summary = new_l10 + \"\\n\\n\" + l30_summary\n\n # ───── L1–L5 (standard factual summaries) ─────\n else:\n prompt = f\"\"\"\n You are Lyra Intake, a background summarization module for an AI assistant.\n\n Your job is to compress recent chat exchanges between a user and an assistant\n into a short, factual summary. The user's name is Brian, and the assistant's name is Lyra. \n Focus only on the real conversation content.\n Do NOT invent names, people, or examples. Avoid speculation or storytelling.\n\n Summarize clearly what topics were discussed and what conclusions were reached.\n Avoid speculation, names, or bullet points.\n\n Exchanges:\n {text}\n\n Summary:\n \"\"\"\n summary = query_llm(prompt)\n\n return f\"[L{level} Summary of {len(exchanges)} exchanges]: {summary}\"\n\nfrom datetime import datetime\n\nLOG_DIR = \"/app/logs\"\nos.makedirs(LOG_DIR, exist_ok=True)\n\ndef log_to_file(level: str, summary: str):\n \"\"\"Append each summary to a persistent .txt log file.\"\"\"\n timestamp = datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\")\n filename = os.path.join(LOG_DIR, \"summaries.log\")\n with open(filename, \"a\", encoding=\"utf-8\") as f:\n f.write(f\"[{timestamp}] {level}\\n{summary}\\n{'='*60}\\n\\n\")\n\n\n# ───────────────────────────────────────────────\n# 📨 Routes\n# ───────────────────────────────────────────────\n@app.post(\"/add_exchange\")\ndef add_exchange(exchange: dict = Body(...)):\n \"\"\"Add one user→assistant exchange and trigger multi-level summaries (session-aware).\"\"\"\n\n # ── Identify or create session ──\n session_id = exchange.get(\"session_id\") or f\"sess-{uuid4().hex[:8]}\"\n exchange[\"session_id\"] = session_id\n\n # ── Manage per-session hopper ──\n if session_id not in SESSIONS:\n SESSIONS[session_id] = {\n \"buffer\": deque(maxlen=100),\n \"last_update\": datetime.now()\n }\n print(f\"🆕 Hopper created: {session_id}\")\n\n hopper = SESSIONS[session_id]\n buffer = hopper[\"buffer\"]\n buffer.append(exchange)\n hopper[\"last_update\"] = datetime.now()\n\n count = len(buffer)\n summaries = {}\n\n # ── Normal tiered behavior up to 30 ──\n if count < 30:\n if count in LEVELS:\n for lvl in LEVELS:\n if lvl <= count:\n summaries[f\"L{lvl}\"] = summarize(list(buffer)[-lvl:], lvl)\n log_to_file(f\"L{lvl}\", summaries[f\"L{lvl}\"])\n push_summary_to_neomem(summaries[f\"L{lvl}\"], f\"L{lvl}\", session_id)\n\n\n # ── Beyond 30: keep summarizing every +15 exchanges ──\n else:\n # Find next milestone after 30 (45, 60, 75, ...)\n milestone = 30 + ((count - 30) // 15) * 15\n if count == milestone:\n summaries[f\"L{milestone}\"] = summarize(list(buffer)[-15:], milestone)\n log_to_file(f\"L{milestone}\", summaries[f\"L{milestone}\"])\n push_summary_to_neomem(summaries[f\"L{milestone}\"], f\"L{milestone}\", session_id)\n\n # Optional: merge all continuity summaries so far into a running meta-summary\n joined = \"\\n\\n\".join(\n [s for key, s in summaries.items() if key.startswith(\"L\")]\n )\n meta_prompt = f\"\"\"\n You are Lyra Intake composing an 'Ongoing Continuity Report' that merges\n all prior continuity summaries into one living narrative.\n Focus on major themes, changes, and lessons so far.\n\n Continuity Summaries:\n {joined}\n\n Ongoing Continuity Report:\n \"\"\"\n meta_summary = f\"[L∞ Ongoing Continuity Report]: {query_llm(meta_prompt)}\"\n summaries[\"L∞\"] = meta_summary\n log_to_file(\"L∞\", meta_summary)\n push_summary_to_neomem(meta_summary, \"L∞\", session_id)\n\n print(f\"🌀 L{milestone} continuity summary created (messages {count-14}-{count})\")\n\n # ── Log summaries ──\n if summaries:\n print(f\"🧩 Summaries generated at count={count}: {list(summaries.keys())}\")\n\n return {\n \"ok\": True,\n \"exchange_count\": count,\n \"summaries\": summaries or None,\n }\n\n# ───────────────────────────────────────────────\n# Clear rubbish from hopper.\n# ───────────────────────────────────────────────\ndef close_session(session_id: str):\n \"\"\"Run a final summary for the given hopper, post it to NeoMem, then delete it.\"\"\"\n hopper = SESSIONS.get(session_id)\n if not hopper:\n print(f\"⚠️ No active hopper for {session_id}\")\n return\n\n buffer = hopper[\"buffer\"]\n if not buffer:\n print(f\"⚠️ Hopper {session_id} is empty, skipping closure\")\n del SESSIONS[session_id]\n return\n\n try:\n print(f\"🔒 Closing hopper {session_id} ({len(buffer)} exchanges)\")\n\n # Summarize everything left in the buffer\n final_summary = summarize(list(buffer), 30) # level 30 = continuity synthesis\n log_to_file(\"LFinal\", final_summary)\n push_summary_to_neomem(final_summary, \"LFinal\", session_id)\n\n # Optionally: mark this as a special 'closure' memory\n closure_note = f\"[Session {session_id} closed with {len(buffer)} exchanges]\"\n push_summary_to_neomem(closure_note, \"LFinalNote\", session_id)\n\n print(f\"🧹 Hopper {session_id} closed and deleted\")\n except Exception as e:\n print(f\"💥 Error closing hopper {session_id}: {e}\")\n finally:\n del SESSIONS[session_id]\n \n@app.post(\"/close_session/{session_id}\")\ndef close_session_endpoint(session_id: str):\n close_session(session_id)\n return {\"ok\": True, \"closed\": session_id}\n\n\n\n# ───────────────────────────────────────────────\n# ✅ Health check\n# ───────────────────────────────────────────────\n@app.get(\"/health\")\ndef health():\n return {\"ok\": True, \"model\": SUMMARY_MODEL, \"url\": SUMMARY_URL}\n\nHow does this look?" }, { "role": "assistant", "content": "That’s **excellent — really clean, modular, and safe** ✅ \n\nYou’ve got everything wired up in the right order. Let’s double-check the flow piece-by-piece: \n\n| Part | ✅ / ⚠️ | Notes |\n|------|----------|-------|\n| **NeoMem payload** | ✅ | Matches Relay’s schema perfectly — no risk of 422s. |\n| **Session management** | ✅ | True multi-hopper design (`SESSIONS` dict with buffer + timestamp). |\n| **Summarization logic** | ✅ | Intact from before; still triggers tiered summaries. |\n| **Finalization** (`close_session`) | ✅ | Gracefully summarizes + pushes final summary + closure note, then deletes the hopper. |\n| **Endpoint exposure** (`/close_session/{session_id}`) | ✅ | Perfect for manual control or automated pruning later. |\n| **Error handling** | ✅ | Catch/finally ensures hoppers always deleted even on exceptions. |\n| **Health route** | ✅ | Still reachable and simple. |\n\n### 🧠 Behavior summary\n- You can run multiple sessions concurrently; each keeps its own `deque`.\n- When you call `/close_session/`, it writes a final `LFinal` summary and marks the closure.\n- Future auto-cleanup threads can reuse `close_session()` directly.\n- The whole service remains memory-safe (no runaway buffers).\n\n---\n\n### 🔧 (Tiny nitpicks if you want it *perfect*)\n1. **Remove duplicated headers block** in `push_summary_to_neomem()` (you have two `headers = {...}` back-to-back — harmless but redundant). \n2. Consider bumping timeout in `requests.post(..., timeout=25)` since NeoMem sometimes takes >10 s.\n\nAfter that: 💯 — you’ve basically built a mini multi-session summarization server. \n\nWould you like me to show the 3-line background cleaner thread that automatically calls `close_session()` on any hopper idle for, say, an hour?" }, { "role": "user", "content": "Does this do it automatically? or does it have to be triggered manually? (i also think i like the idea of manually being able to close it, via an option in the UI)" }, { "role": "assistant", "content": "right now it’s **manual-only** — which is perfect for where you’re at. \n\nthe function you added only runs when something explicitly calls it, like: \n```bash\ncurl -X POST http://localhost:7080/close_session/poker-sess1\n```\nor when your UI sends a POST to that same endpoint.\n\nthat gives you full control from the front-end: \nyou can have a “🧹 Close Session” button next to each conversation, and clicking it will:\n\n1. tell Intake to summarize everything left in that hopper, \n2. post the `LFinal` + closure note to NeoMem, \n3. delete the hopper from memory. \n\n---\n\n### 🧩 if later you want automatic cleanup\nyou can drop in a short background thread:\n\n```python\ndef auto_close_idle_sessions(timeout_minutes=60):\n while True:\n now = datetime.now()\n for sid, hopper in list(SESSIONS.items()):\n age = (now - hopper[\"last_update\"]).total_seconds() / 60\n if age > timeout_minutes:\n close_session(sid)\n time.sleep(300) # check every 5 min\n```\nand start it once at the bottom of the file:\n```python\nThread(target=auto_close_idle_sessions, daemon=True).start()\n```\n\nbut for now, manual is the right move — easier to test and it won’t surprise you by cleaning up something you were still working on." }, { "role": "user", "content": "🆕 Hopper created: sess-0e716724\n🧠 NeoMem updated (L1, sess-0e716724, 171 chars)\n🧩 Summaries generated at count=1: ['L1']\nINFO: 10.0.0.40:51664 - \"POST /add_exchange HTTP/1.1\" 200 OK\n🆕 Hopper created: sess-5dc63ea8\n🧠 NeoMem updated (L1, sess-5dc63ea8, 396 chars)\n🧩 Summaries generated at count=1: ['L1']\nINFO: 10.0.0.40:59118 - \"POST /add_exchange HTTP/1.1\" 200 OK\n\nIts still making new sessions for each send. " }, { "role": "assistant", "content": "ah — yep, that means Intake still isn’t being told which session the message belongs to. \nyour code’s doing its job correctly (`exchange.get(\"session_id\") or f\"sess-{uuid4()}\"`) — it just never *receives* the `session_id`, so it keeps generating new ones.\n\nso the fix isn’t in Intake anymore — it’s on **Relay’s side** (the one forwarding messages from the UI). \nremember how Relay builds the Intake payload here 👇 \n\n```js\nconst intakePayload = {\n turns: [\n { role: \"user\", content: lastUserMsg },\n { role: \"assistant\", content: assistantReply || \"\" }\n ]\n};\n```\n\nthat snippet never includes a session ID. \nso Intake sees this payload, doesn’t find `\"session_id\"`, and spins up a new hopper every time.\n\n---\n\n### ✅ how to fix it\n\nin `server.js` (Relay), find that block and change it to:\n\n```js\nconst intakePayload = {\n session_id: sessionId, // ✅ add this line\n turns: [\n { role: \"user\", content: lastUserMsg },\n { role: \"assistant\", content: assistantReply || \"\" }\n ]\n};\n```\n\nThen rebuild / restart Relay:\n```bash\ndocker compose up -d --build relay\ndocker logs -f relay\n```\n\nNow every message from the same UI tab (same `sessionId`) will go to the **same hopper** inside Intake.\n\n---\n\nyou can test it easily by sending two back-to-back messages in the same chat. \nexpected log in Intake:\n\n```\n🆕 Hopper created: sess-demo1\n🧩 Summaries generated at count=1: ['L1']\n🧩 Summaries generated at count=2: ['L2']\n```\n\nwant me to show where in Relay the `sessionId` originates from so you can double-check it’s being passed through correctly?" }, { "role": "user", "content": "INFO: 10.0.0.40:59118 - \"POST /add_exchange HTTP/1.1\" 200 OK\n🆕 Hopper created: sess-tgvq42dr\n🧠 NeoMem updated (L1, sess-tgvq42dr, 396 chars)\n🧩 Summaries generated at count=1: ['L1']\nINFO: 10.0.0.40:35950 - \"POST /add_exchange HTTP/1.1\" 200 OK\n🧠 NeoMem updated (L1, sess-tgvq42dr, 447 chars)\n🧠 NeoMem updated (L2, sess-tgvq42dr, 520 chars)\n🧩 Summaries generated at count=2: ['L1', 'L2']\nINFO: 10.0.0.40:45298 - \"POST /add_exchange HTTP/1.1\" 200 OK\n\nbeauty!" }, { "role": "assistant", "content": "let’s gooo 🎯 \nthat’s the magic line finally doing its thing — Relay passing `session_id`, Intake catching it, and the same hopper stacking messages cleanly.\n\nyou can see it perfectly in the logs: \nfirst call → hopper created \nsecond call → *no new hopper*, summaries progress to L2 \n\nyou now officially have **multi-session continuity** working end-to-end. \n\nUI ↔ Relay ↔ Intake ↔ NeoMem = all synced by session id ✅ \n\nnext step (if you ever want it) could be to list the live hoppers with message counts from a `/sessions` route, but otherwise you’re in great shape." }, { "role": "user", "content": "Okay i have two bugs to report. 1. Sessions dont seem to persist via the UI. not sure what reset it, maybe the docker container rebuild? but i also noticed when i opened the ui on my phone, the sessions from earlier on desktop were not there. 2. Everything is currently running linearly. So none of the async stuff is working. IE, messages are sent to neomem, neomem does its stuff, then messages are sent to intake, intake does its stuff, then relay finally gets the injected prompt and the answering LLM finally responds. So that needs to be adjusted" }, { "role": "assistant", "content": "great catch on both — those are two very different bugs, but both make perfect sense given how the stack is wired right now. \nlet’s split them cleanly so we can attack each one properly 👇 \n\n---\n\n## 🪣 **1️⃣ Session persistence**\n\n### what’s happening\nRelay’s session state lives *in its Node process memory*, not in any external storage. \nWhen you:\n- rebuild containers, or \n- open the UI from a new device, \n\nyou’re starting a **new browser session**, which causes Relay to generate a new `sessionId`. \nIntake itself has no idea those should be “the same conversation,” because its `SESSIONS` map is also RAM-bound.\n\n### short-term fix\nAdd a small persistence layer inside **Relay**, since it already handles sessions. \nSimplest path:\n```js\n// near the top of server.js\nimport fs from \"fs\";\nconst sessionsFile = \"./sessions.json\";\nlet sessionMap = fs.existsSync(sessionsFile)\n ? JSON.parse(fs.readFileSync(sessionsFile))\n : {};\n\n// when creating a new session\nif (!sessionMap[userId]) sessionMap[userId] = [];\nsessionMap[userId].push(sessionId);\nfs.writeFileSync(sessionsFile, JSON.stringify(sessionMap, null, 2));\n```\nThat way Relay can reload known session IDs after restarts, and you can later expose them to the UI through `/sessions`.\n\n**Long-term option:** store session metadata in NeoMem (like a `type: session` record). That would make sessions universal across devices.\n\n---\n\n## ⚙️ **2️⃣ Everything running linearly (no async concurrency)**\n\n### why it’s happening\nIn `server.js`, the chat route does:\n\n```js\nawait memAdd(...)\nawait memSearch(...)\n```\n\nwhich means the call waits for NeoMem before moving on. \nSame for Intake — all `requests.post(...)` calls are synchronous (blocking).\n\nSo your sequence is:\n```\nuser → Relay → (await memAdd → await memSearch → Intake → LLM)\n```\nThat’s why the first response takes 10–15 s.\n\n### how to fix it (safe async pattern)\n\n#### Option A — Fire-and-forget NeoMem/Intake calls\nDon’t `await` them; just run them in the background and log failures.\n\n```js\n// replace\nawait memAdd(lastUserMsg, userId, sessionId, cortexData);\n// with\nmemAdd(lastUserMsg, userId, sessionId, cortexData)\n .catch(e => console.warn(\"mem.add async error\", e.message));\n```\n\nand same for Intake:\n\n```js\nfetch(process.env.INTAKE_API_URL, { ... })\n .then(() => console.log(\"📨 Sent to Intake\"))\n .catch(err => console.warn(\"⚠️ Intake async error:\", err.message));\n```\n\nNow Relay can immediately continue to `memSearch()` or the LLM call while those happen in parallel.\n\n#### Option B — Worker sidecar\nIf you’d rather keep the call trace clean, move Intake + NeoMem writes into a small background queue (e.g. `bullmq` for Node, or Redis stream). That’s more robust later but overkill for now.\n\n---\n\n## ✅ Recommended immediate plan\n\n1. Add the **fire-and-forget** async pattern in Relay to parallelize NeoMem + Intake.\n2. Add a **small session registry file** in Relay for persistence across rebuilds / devices.\n3. Later (once that’s solid), move sessions + logs into NeoMem for true cross-device continuity.\n\n---\n\nwant me to show you exactly where to drop the async edits inside your `server.js` route (so you can copy-paste)?" }, { "role": "user", "content": "thats a job for tomorrow brian. Also we need to do some housekeeping, update the readme and the changelog, plus keep an ongoing docs for how all this shit works in trillium. So keep that in mind, and we will get on to it tomorrow! night night" }, { "role": "assistant", "content": "night night, captain 🌙💤 \n\ngot it — tomorrow’s agenda: \n- 🧹 **Housekeeping sprint:** update the README & CHANGELOG, \n- 🗂️ start a living “How It Works” doc in Trilium for the whole Lyra stack (Relay → Intake → NeoMem → Cortex), \n- ⚙️ prep the async + session-persistence patches. \n\nI’ll keep all that queued. sleep well — your hoppers will stand watch until morning." }, { "role": "user", "content": "okay, what needs done, Its afternoon now" }, { "role": "assistant", "content": "perfect timing 😎 — we’re in **housekeeping mode** today. \n\nhere’s the rundown of what’s pending from last night’s wrap-up and what order I’d do it in: \n\n---\n\n## 🧹 1️⃣ Update README\nGoal: bring it up to date with the *current working architecture* so new readers (or future you) can instantly see how the pieces fit. \nInclude:\n- current component list (`relay`, `intake`, `neomem`, `cortex`)\n- how messages flow (`UI → Relay → Intake/NeoMem → LLM`)\n- session / hopper system\n- how summaries are triggered (L1–L∞)\n- how closure summaries work\n- env vars required for each container \n\nI can scaffold the structure and sections for you, then you fill in any project-specific details. \n\n---\n\n## 🧾 2️⃣ Update CHANGELOG\nFollow the existing “Keep a Changelog” format. \nAdd a new `[Unreleased]` section and move the current changes into something like:\n\n```\n## [Lyra-Core 0.3.2] - 2025-10-29\n### Added\n- Multi-hopper session system in Intake.\n- Manual `/close_session` endpoint.\n- NeoMem integration using messages payload schema.\n### Changed\n- Relay now forwards session_id to Intake.\n- Intake summaries tagged with session_id and level.\n### Fixed\n- 422 NeoMem payload errors.\n```\n\nI’ll generate this snippet for you once we lock the exact version number you want (0.3.2?).\n\n---\n\n## 📘 3️⃣ Trilium “How It Works” doc\nThis should become your **internal reference manual**. \nStart with these sections:\n1. **Overview:** one-paragraph system summary.\n2. **Component Roles:** (Relay, Intake, NeoMem, Cortex).\n3. **Message Flow Diagram:** short text version of the data path.\n4. **Session Logic:** how hoppers, session IDs, and closure summaries work.\n5. **Common Commands:** Docker compose, curl routes, rebuild notes.\n6. **Future Plans / To-dos.**\n\nI can write you a ready-to-paste Markdown/HTML version for Trilium.\n\n---\n\nso, what do you want to tackle first — \n📖 the **README refresh** (I’ll draft a current one), \nor 🧾 the **CHANGELOG update** (quickest win)?" }, { "role": "user", "content": "im working on the readme right now\n\n##### Project Lyra - README v0.2.0 - needs polish #####\n\nLyra is a modular persistent AI companion system. \nIt provides memory-backed chat using **NeoMem** + **Relay** + **Persona Sidecar**, \nwith optional subconscious annotation powered by **Cortex VM** running local LLMs.\n\n## Mission Statement ##\n\tThe point of project lyra is to give an AI chatbot more abilities than a typical chatbot. typical chat bots are essentially amnesic and forget everything about your project. Lyra helps keep projects organized and remembers everything you have done. Think of her abilities as a notepad/schedule/data base/ co-creator/collaborattor all with its own executive function. Say something in passing, Lyra remembers it then reminds you of it later.\n\t\n## Structure ##\n\tProject Lyra exists as a series of docker containers that run independentally of each other but are all networked together. Think of it as how the brain has regions, Lyra has modules:\n\t## A. VM 100 - lyra-core:\n\t\t1. ** Core v0.3.1 - Docker Stack\n\t\t\t- Relay - (docker container) - The main harness that connects the modules together and accepts input from the user.\n\t\t\t- UI - (HTML) - This is how the user communicates with lyra. ATM its a typical instant message interface, but plans are to make it much more than that.\n\t\t\t- Persona - (docker container) - This is the personality of lyra, set how you want her to behave. Give specific instructions for output. Basically prompt injection.\n\t\t\t- All of this is built and controlled by a single .env and docker-compose.lyra.yml.\n\t\t2. **NeoMem v0.1.0 - (docker stack)\n\t\t\t- NeoMem is Lyra's main long term memory data base. It is a fork of mem0 oss. Uses vector databases and graph.\n\t\t\t- NeoMem launches with a single separate docker-compose.neomem.yml.\n\t\t\t\n\t## B. VM 101 - lyra - cortex\n\t\t3. ** Cortex - VM containing docker stack\n\t\t- This is the working reasoning layer of Lyra.\n\t\t- Built to be flexible in deployment. Run it locally or remotely (via wan/lan) \n\t\t- Intake v0.1.0 - (docker Container) gives conversations context and purpose\n\t\t\t- Intake takes the last N exchanges and summarizes them into coherrent short term memories.\n\t\t\t- Uses a cascading summarization setup that quantizes the exchanges. Summaries occur at L2, L5, L10, L15, L20 etc.\n\t\t\t- Keeps the bot aware of what is going on with out having to send it the whole chat every time. \n\t\t- Reflect - (docker continer) - Not yet implemented, road map. \n\t\t\t- Calls back to NeoMem after N exchanges and N summaries and edits memories created during the initial messaging step. This helps contain memories to coherrent thoughts, reduces the noise.\n\t\t\t- Can be done actively and asynchronously, or on a time basis (think human sleep and dreams). \n\t\t\t- This stage is not yet built, this is just an idea. \n\t\t\n\t## C. Remote LLM APIs:\n\t\t3. **AI Backends\n\t\t\t- Lyra doesnt run models her self, she calls up APIs.\n\t\t\t- Endlessly customizable as long as it outputs to the same schema. \n\t\t\t\n---\n\n\n## 🚀 Features ##\n\n# Lyra-Core VM\n- **Relay **:\n - The main harness and orchestrator of Lyra.\n - OpenAI-compatible endpoint: `POST /v1/chat/completions`\n - Injects persona + relevant memories into every LLM call\n - Routes all memory storage/retrieval through **NeoMem**\n - Logs spans (`neomem.add`, `neomem.search`, `persona.fetch`, `llm.generate`)\n\n- **NeoMem (Memory Engine)**:\n - Forked from Mem0 OSS and fully independent.\n - Drop-in compatible API (`/memories`, `/search`).\n - Local-first: runs on FastAPI with Postgres + Neo4j.\n - No external SDK dependencies.\n - Default service: `neomem-api` (port 7077).\n - Capable of adding new memories and updating previous memories. Compares existing embeddings and performs in place updates when a memory is judged to be a semantic match.\n\n- **Persona Sidecar**:\n - Simple JSON-based persona definition.\n - Injected as `system` message in every chat.\n - Essnetially a place holder as is.\n - Currently disabled. \n\n- **UI**:\n - Lightweight static HTML chat page.\n - Connects to Relay at `http://:7078`.\n - Nice cyberpunk theme!\n - Saves and loads sessions, which then in turn send to relay.\n\n# Cortex VM\n - **Cortex (container) main reasoning orchestrator.**\n\t- This is the internal brain of Lyra.\n\t- Currently a locally served LLM running on a Radeon Instinct HI50, using a customized version of vLLM that lets it use ROCm.\n\t\n - **Intake v0.1.1 **\n - Recieves messages from relay and summarizes them in a cascading format.\n\t- Continues to summarize smaller amounts of exhanges while also generating large scale conversational summaries. (L20)\n - **Reflect **\n -TBD\n\n---\n\n## 📦 Requirements\n\n- Docker + Docker Compose \n- Postgres + Neo4j (for NeoMem)\n- Access to an open AI or ollama style API.\n- OpenAI API key (for Relay fallback LLMs)\n\n**Dependencies:**\n\t- fastapi==0.115.8\n\t- uvicorn==0.34.0\n\t- pydantic==2.10.4\n\t- python-dotenv==1.0.1\n\t- psycopg>=3.2.8\n\t- ollama\n\n---\n\n🔌 Integration Notes\n\nLyra-Core connects to neomem-api:8000 inside Docker or localhost:7077 locally.\n\nAPI endpoints remain identical to Mem0 (/memories, /search).\n\nHistory and entity graphs managed internally via Postgres + Neo4j.\n\n---\n\n🧱 Architecture Snapshot\n\nLyra-Core → NeoMem → Persona Sidecar → Cortex (optional)\n\n1. Each message passes through:\n\n2. Persona injection\n\n3. Memory search (/search)\n\n4. LLM generation\n\n5 . Memory storage (/memories)\n\n---\n\n## 📖 License\nNeoMem is a derivative work based on the Mem0 OSS project (Apache 2.0). \nThis fork retains the original Apache 2.0 license and adds local modifications. \n© 2025 Terra-Mechanics / ServersDown Labs. All modifications released under Apache 2.0.\n" }, { "role": "assistant", "content": "Nice — that’s already 90 % of the way to a professional README. 💾 \n\nHere’s what I’d suggest polishing next, section-by-section, to make it clean and easier to maintain: \n\n---\n\n### 🧩 Structural / Formatting Tweaks\n- Use consistent heading levels (`##` for major sections, `###` for subsections). \n- Drop tab indentation inside Markdown — it breaks rendering on GitHub. \n- Wrap each “module” under clear subheadings like **Lyra-Core**, **NeoMem**, **Cortex VM**, **Intake**, etc. \n- Replace inline code quotes (like `**Relay **`) with backticks: `` `Relay` `` — avoids bold spacing bugs.\n\n---\n\n### 📖 Suggested Rewrite Outline\nI’d restructure like this for clarity (you can copy this skeleton into your doc and fill in your existing paragraphs):\n\n```markdown\n# Project Lyra\n*A modular persistent AI companion system*\n\n---\n\n## 🪶 Mission Statement\nTypical chatbots are amnesic — they forget everything between sessions. \nLyra is designed to *remember*, organize, and reason. \nShe acts as a co-creator, notepad, scheduler, and database, all guided by an internal executive function.\n\n---\n\n## 🧠 Architecture Overview\nLyra runs as a constellation of Docker containers, each representing a different brain region.\n\n### A. Lyra-Core (VM 100)\n**Purpose:** front-end and memory gateway \n- **Relay** – orchestrator; OpenAI-compatible API (`/v1/chat/completions`) \n- **UI** – HTML/JS chat interface \n- **Persona Sidecar** – persona definition (optional) \n- **NeoMem** – long-term vector + graph memory engine \n\n### B. Cortex VM (101)\n**Purpose:** reasoning + summarization \n- **Intake v0.1.1** – cascading summarizer (“short-term memory”) \n- **Reflect (TBD)** – planned consolidation / memory refinement layer \n\n### C. External LLMs\n**Purpose:** language generation \n- Compatible with Ollama, OpenAI, or any API matching the same schema.\n\n---\n\n## 🚀 Key Features\n### Relay\n- Routes user input to LLMs and NeoMem \n- Injects persona + relevant memories \n- Logs spans: `mem.add`, `mem.search`, `persona.fetch`, `llm.generate`\n\n### NeoMem\n- Forked from **Mem0 OSS** \n- REST API: `/memories`, `/search` \n- Backend: Postgres + Neo4j \n- Performs semantic deduplication and in-place updates\n\n### Intake\n- Receives user↔assistant exchanges from Relay \n- Maintains **per-session hoppers** for concurrent conversations \n- Generates hierarchical summaries (L1 → L∞) \n- Pushes summaries to NeoMem for persistence \n- Manual closure via `/close_session/{id}` endpoint\n\n### Cortex (LLM VM)\n- Runs local reasoning models (Radeon Instinct MI50) via ROCm \n- Optional: can act as Reflect’s compute backend \n\n---\n\n## ⚙️ Requirements\n- Docker + Docker Compose \n- Postgres + Neo4j (for NeoMem) \n- Optional LLM backends (Ollama / OpenAI API)\n\n**Python deps**\n```\nfastapi uvicorn pydantic python-dotenv psycopg ollama\n```\n\n---\n\n## 🔌 Integration Notes\n- `Relay → NeoMem` (port 7077)\n- `Relay → Intake` (port 7080)\n- APIs mirror Mem0 OSS (`/memories`, `/search`)\n- NeoMem internally handles embeddings + graph links\n\n---\n\n## 🧱 Message Flow\n```\nUI → Relay\n ↳ mem.add (NeoMem)\n ↳ mem.search (NeoMem)\n ↳ Intake (summaries)\n ↳ LLM (OpenAI / Ollama)\n ↳ NeoMem (store new summary)\n```\n\n---\n\n## 🗂️ Versioning\n| Component | Version | Notes |\n|------------|----------|-------|\n| Lyra-Core | 0.3.1 | Current main stack |\n| NeoMem | 0.1.0 | Fork of Mem0 OSS |\n| Intake | 0.1.1 | Multi-hopper summarizer |\n| Cortex | 0.1.0 | Reasoning VM |\n\n---\n\n## 📄 License\nApache 2.0 — derived from Mem0 OSS. \n© 2025 Terra-Mechanics / ServersDown Labs. \n\n---\n\n### ✅ Optional polish to add later\n- Diagram (Mermaid or ASCII) showing message path. \n- Link to CHANGELOG. \n- “Quickstart” Docker compose snippet. \n- “How It Works” section cross-linked to your Trilium doc.\n\n---\n\nIf you want, I can produce the **polished Markdown** version of this so you can drop it in your repo immediately — keep all your content, just cleaned up formatting and structure. \nWant me to output that version?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"sediment://file_000000000ca861f6a17fa847f635f09c\", \"size_bytes\": 87429, \"width\": 491, \"height\": 1179, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} can we do the How it works Doc? i need help organizing stuff. I start a system, then forget what the system is, then start a new one etc etc. Look at all the crap lol" }, { "role": "assistant", "content": "LMAO yeah — this is the classic “I built a modular brain and now I need a brain to remember the brain.” \nTotally normal phase. You’ve hit **cognitive sprawl** — which means Lyra’s architecture is officially big enough to warrant a real map. \n\nLet’s fix that cleanly. \nHere’s what I propose for your **📘 “How It Works” Doc** structure — built specifically for Trilium and your existing folders.\n\n---\n\n# 📘 Lyra – How It Works \n*A living system overview for current and future versions.*\n\n---\n\n## 🧭 1. Overview\n**Lyra** is a modular, persistent AI system composed of independently running Docker modules that communicate over HTTP. \nEach module mirrors a “region” of a brain — perception (Relay), memory (NeoMem), summarization (Intake), and reasoning (Cortex). \nThis document describes how data moves between them and what each part does.\n\n---\n\n## 🧩 2. Core Components\n\n### A. **Relay (Lyra-Core)**\n- Acts as the central **router and orchestrator**.\n- Handles all user input/output via the `/v1/chat/completions` endpoint (OpenAI-style).\n- Responsibilities:\n - Inject persona definitions.\n - Fetch relevant memories from NeoMem (`/search`).\n - Send user/assistant exchanges to Intake for summarization.\n - Save new memories back to NeoMem (`/memories`).\n- Location: `Lyra-Core VM` → `server.js` \n- Ports: `7078` (Relay API), `7077` (NeoMem API)\n\n---\n\n### B. **NeoMem (Memory Engine)**\n- Forked from **Mem0 OSS**.\n- Stores all memories as vector embeddings + graph relationships.\n- Schema:\n ```json\n {\n \"messages\": [{ \"role\": \"user\", \"content\": \"memory text\" }],\n \"user_id\": \"brian\",\n \"metadata\": { \"source\": \"relay\", \"context\": \"poker\" }\n }\n ```\n- Auto-updates semantically similar entries.\n- Backends: `Postgres + Neo4j`.\n- Service name: `neomem-api`\n- Key routes:\n - `POST /memories` → add/update memory\n - `POST /search` → retrieve relevant memories\n\n---\n\n### C. **Intake (Summarization Layer)**\n- Receives message exchanges from Relay.\n- Maintains per-session *hoppers* (short-term buffers).\n- Generates hierarchical summaries:\n - **L1–L5:** factual blocks\n - **L10:** “Reality Check”\n - **L20:** “Session Overview”\n - **L30+:** “Continuity Reports”\n- Pushes all summaries into NeoMem with metadata:\n ```json\n { \"source\": \"intake\", \"level\": \"L10\", \"session_id\": \"sess-1234\" }\n ```\n- Supports manual closure:\n - `POST /close_session/{id}` — runs final summary + clears hopper.\n- Location: `Cortex VM` → `intake.py`\n- Port: `7080`\n\n---\n\n### D. **Cortex (Reasoning Layer)**\n- VM for Lyra’s “inner thought” and deeper reasoning.\n- Currently hosts local LLMs via ROCm (Instinct MI50).\n- Future role: \n - Handle asynchronous reflection tasks (nightly memory consolidation).\n - Cross-link summaries from Intake with existing NeoMem memories.\n- Planned submodules:\n - `Reflect` – memory refinement and dream-state processing.\n - `Thalamus` – orchestration + routing intelligence (TBD).\n\n---\n\n## 🔁 3. Data Flow (Message Lifecycle)\n\n```\nUI → Relay\n ↳ mem.search (NeoMem)\n ↳ persona.inject\n ↳ LLM.generate\n ↳ mem.add (NeoMem)\n ↳ intake.add_exchange (summarization)\n ↳ push_summary_to_neomem\n```\n\n**Step-by-step example:**\n1. You send a message in the UI. \n2. Relay logs it, queries NeoMem for relevant memories, injects them into the prompt. \n3. Relay sends the user+assistant exchange to Intake. \n4. Intake appends it to that session’s hopper and, at certain thresholds, summarizes and pushes results back to NeoMem. \n5. Over time, summaries form a timeline of project evolution and context continuity. \n\n---\n\n## ⚙️ 4. Environment Variables (per module)\n| Module | Key Variables | Description |\n|---------|----------------|-------------|\n| Relay | `NEOMEM_API`, `MEM0_API_KEY`, `CORTEX_ENABLED`, `INTAKE_API_URL` | Memory + summarization endpoints |\n| Intake | `SUMMARY_API_URL`, `NEOMEM_API`, `NEOMEM_KEY` | Summarization + NeoMem push |\n| NeoMem | `POSTGRES_URL`, `NEO4J_URL`, `OPENAI_API_KEY` | DB + embedding backends |\n| Cortex | `LLM_MODEL_PATH`, `ROCM_VISIBLE_DEVICES` | Model + GPU config |\n\n---\n\n## 🧠 5. Current Behavior\n- **Sessions:** Relay passes `session_id`; Intake groups conversations into per-session hoppers. \n- **Async (WIP):** Currently linear; next milestone is async dispatch (Relay → Intake + NeoMem parallel). \n- **Persistence:** Sessions live in memory unless containers are rebuilt; persistence layer coming soon. \n\n---\n\n## 🧹 6. Maintenance Notes\n- **Restart order:** `NeoMem` → `Relay` → `Intake` → `Cortex`\n- **Logs:** \n - Relay: `sessions/*.json` \n - Intake: `/app/logs/summaries.log` \n - NeoMem: Uvicorn stdout \n- **Backups:** \n - Postgres dump \n - Neo4j export \n\n---\n\n## 🛠️ 7. Future Plans\n- Persistent session registry across devices. \n- Asynchronous memory and summary updates. \n- Reflect layer integration for memory refinement. \n- Trilium integration for direct memory reflection. \n- UI overhaul with per-session management.\n\n---\n\n## 🧾 8. Changelog Reference\n- Link to `/project-log/phase-1-mvp/9-29-25-update`\n- Latest version: `Lyra-Core v0.3.1`, `Intake v0.1.1`\n\n---\n\nIf you’d like, I can format this in **Trilium WYSIWYG-ready rich text** (not Markdown), so it pastes perfectly — headers bolded, code sections styled, and subheadings collapsible.\n\nWant me to generate that version for direct pasting?" }, { "role": "user", "content": "I think it shuold have different notes in different folders right?" }, { "role": "assistant", "content": "Exactly — 100 % agree. \nOne giant “How It Works” note becomes unreadable after two versions. \nThe smart Trilium move is to break it into a **mini-wiki** under a single parent folder, so each module and concept can evolve separately.\n\nHere’s the layout I’d use inside your **Docs** branch (you can nest it under `Docs → How It Works` or directly under `Lyra A3` if you prefer):\n\n---\n\n### 📘 **How It Works** *(Parent note — short overview only)*\n**Purpose:** quick summary + table of contents. \nText:\n> “This section documents how each Lyra subsystem works and how data flows between them.”\n\nSub-notes:\n\n---\n\n#### 🧩 1. Architecture Overview\n- One-page summary of the whole stack. \n- ASCII or Mermaid diagram of data flow. \n- High-level “what talks to what”.\n\n---\n\n#### 🚀 2. Lyra-Core / Relay\n- Explain endpoints (`/v1/chat/completions` etc.). \n- Show how Relay injects persona, searches NeoMem, sends to Intake. \n- Include a small schema snippet of its payload to NeoMem + Intake. \n- Add environment variables specific to this container.\n\n---\n\n#### 🧠 3. NeoMem (Memory Engine)\n- Purpose: long-term vector + graph memory. \n- Explain how `/memories` and `/search` work. \n- Include minimal JSON example. \n- Note DB back-end (Postgres + Neo4j) and ports. \n- Mention version compatibility with Mem0.\n\n---\n\n#### 🪶 4. Intake (Summarization Layer)\n- Explain per-session hopper concept. \n- Show hierarchy levels (L1–L∞). \n- Document `/add_exchange` and `/close_session/{id}` routes. \n- Include trigger rules (message count, idle-time cleanup). \n- Mention where logs are stored.\n\n---\n\n#### 🧩 5. Cortex (Reasoning Layer)\n- Describe purpose and current prototype state. \n- Hardware (MI50 + ROCm). \n- Planned Reflect/Thalamus sub-modules. \n- How it may later async-reflect NeoMem memories.\n\n---\n\n#### 💬 6. UI / Persona\n- UI session management, saving/loading JSON. \n- Persona Sidecar description and how to modify personality JSON.\n\n---\n\n#### 🔁 7. Data Flow Lifecycle\n- A diagram or numbered list:\n ```\n UI → Relay → NeoMem(search) → LLM → Intake → NeoMem(store)\n ```\n- Step-by-step of what happens per message.\n\n---\n\n#### ⚙️ 8. Environment Variables Reference\n- Table combining vars for each container (like the one I gave earlier).\n\n---\n\n#### 🧹 9. Maintenance & Backups\n- Restart order.\n- How to export Neo4j/Postgres.\n- Log paths and cleanup scripts.\n\n---\n\n#### 🔮 10. Future Plans / Roadmap\n- Persistent sessions across devices. \n- Async execution. \n- Reflect layer. \n- UI v2 timeline.\n\n---\n\nThen you can **link related Trilium notes** cross-wise — \nfor example, in the *Intake* note, link to your existing `Intake Notes 10-15-25`, and in the *Cortex* note, link to `Lyra Cortex – Design Vision`.\n\n---\n\nWould you like me to generate **the actual note skeleton (titles + placeholder descriptions)** ready for pasting into Trilium — so you can just create those notes instantly?" }, { "role": "user", "content": "can you help me design the note tree?" }, { "role": "assistant", "content": "Absolutely — this is the fun part 🔧🧠 \n\nLet’s build you a **Trilium “How It Works” note tree** that’s clean, scalable, and matches your architecture. \nWe’ll make it so that you can drop future modules (Reflect, Thalamus, Persona2, etc.) in without breaking anything.\n\n---\n\n## 📘 Proposed Trilium Note Tree\n\n```\n📘 How It Works\n│\n├── 🧭 Overview\n│ ├── Purpose & Philosophy\n│ ├── Architecture Diagram\n│ └── Message Lifecycle\n│\n├── 🧩 Core Systems\n│ ├── Relay (Lyra-Core)\n│ │ ├── Endpoints & Payloads\n│ │ ├── Memory Injection (search/add)\n│ │ ├── Persona Integration\n│ │ └── Environment Variables\n│ │\n│ ├── NeoMem (Memory Engine)\n│ │ ├── Schema & API\n│ │ ├── Deduplication Logic\n│ │ ├── Database Structure (Postgres + Neo4j)\n│ │ └── Maintenance & Backup\n│ │\n│ ├── Intake (Summarization)\n│ │ ├── Hopper System (Per-session Buffers)\n│ │ ├── Summary Levels (L1–L∞)\n│ │ ├── Endpoints (/add_exchange, /close_session)\n│ │ ├── Log Structure\n│ │ └── Cleanup Logic & Future Plans\n│ │\n│ └── Cortex (Reasoning Layer)\n│ ├── Overview & Hardware\n│ ├── Planned Modules (Reflect, Thalamus)\n│ ├── Async Reflection Workflow\n│ └── Local LLM Configuration\n│\n├── 💬 User Layer\n│ ├── UI\n│ │ ├── Chat Interface Flow\n│ │ ├── Session Save/Load Behavior\n│ │ ├── Multi-Device Sessions (Future)\n│ │ └── Planned UI v2\n│ │\n│ └── Persona Sidecar\n│ ├── Persona JSON Schema\n│ ├── Injection Rules\n│ └── Example Persona Profiles\n│\n├── 🔁 Data Flow\n│ ├── Full Pipeline Overview\n│ ├── Example Message Trace (Step-by-step)\n│ ├── Parallelization & Async Notes\n│ └── Inter-VM Networking Map\n│\n├── ⚙️ Configuration Reference\n│ ├── .env Variable Index\n│ ├── Docker Compose Overview\n│ └── Restart Order & Dependencies\n│\n├── 🧹 Maintenance\n│ ├── Logs & Backups\n│ ├── Rebuild / Reset Procedures\n│ ├── Monitoring Ideas (Prometheus / Simple Dash)\n│ └── Common Failures & Fixes\n│\n└── 🔮 Roadmap\n ├── Upcoming Features\n ├── Architecture v0.3.x → v0.4.x Transition\n ├── “Lyra Dreams” Reflection Phase\n └── Long-term Vision (Autonomy & RAG)\n```\n\n---\n\n### 🪄 Notes on the Structure\n\n- **“Overview”** = short, top-level read. This is where you link a diagram and explain what Lyra *is* in human language.\n- **“Core Systems”** = 1:1 with Docker containers — this mirrors your infrastructure.\n- **“User Layer”** = anything visible to you (UI + Persona behavior).\n- **“Data Flow”** = how info actually moves through the system; link to Intake examples and diagrams.\n- **“Configuration Reference”** = tech quickref; this becomes your ops cheat sheet.\n- **“Maintenance”** = “how to restart, debug, and back up.”\n- **“Roadmap”** = evolving document that’s basically your development north star.\n\n---\n\n### 🧠 Add-on: Cross-linking strategy\nTo avoid duplication:\n- In each system note (like *Intake → Summary Levels*), add a “📎 Related Notes” section linking to your corresponding log notes (e.g. “Intake Notes 10-15-25”).\n- Use **Trilium attributes** like:\n ```\n system:intake\n version:0.1.1\n ```\n That way you can search or filter later by system tag.\n\n---\n\nWould you like me to generate the actual **Trilium-ready note list** (each title + short description for pasting via the “Create note tree” dialog or with indentation)? \nThat gives you the base folder + stub notes instantly." }, { "role": "user", "content": "I got the note tree built, so now i guess i just need to go through it and fill it out?" }, { "role": "assistant", "content": "Perfect — that’s exactly where you want to be. 🔧 \nYou’ve done the hard part (defining the skeleton). Now it’s just **filling the organism with organs** — one system at a time.\n\nHere’s how I’d approach it so you don’t get overwhelmed or start rewriting things twice:\n\n---\n\n## 🧩 **Phase 1 – Populate from What Already Exists**\n\n### 1️⃣ Auto-fill from known content\nGo through your existing notes (logs, changelogs, intake notes, cortex design docs, etc.) and **copy only what’s *already written*** into the correct slot in your new tree. \nYou’re not writing fresh prose yet — just populating placeholders.\n\nExamples:\n- Copy the *Relay/NeoMem API flow* explanation from your README → paste into **Core Systems → Relay → Endpoints & Payloads**.\n- Copy your *Intake 10-15-25* summarizer logic → paste into **Intake → Hopper System**.\n- Copy your *Lyra GPU Overview* section → paste into **Cortex → Overview & Hardware**.\n\nThat alone will fill 60 % of the doc tree.\n\n---\n\n## 🧠 **Phase 2 – Fill in Missing Context**\n\nWhen you hit an empty section, use this quick template to avoid blank-page paralysis:\n\n> **Purpose:** (1 sentence — why this exists) \n> **How it works:** (3-5 lines, focus on flow) \n> **Key files or code:** (list filenames or endpoints) \n> **Future plans:** (1 sentence if relevant)\n\nYou can do a whole section in ~3 minutes that way.\n\n---\n\n## 🔁 **Phase 3 – Cross-Link Everything**\n\nAfter rough-filling:\n- Add **cross-links** like “See also: Intake Notes → 10-15-25” or “Referenced in → Phase 1 Changelog”. \n- In Trilium, you can add attributes like:\n ```\n system:intake\n version:0.1.1\n ```\n Then you can search or make dashboards later (“show all notes tagged intake”).\n\n---\n\n## 🧹 **Phase 4 – Refine / Polish pass**\n\nOnce everything exists:\n- Merge overlapping content. \n- Convert raw text into clean paragraphs. \n- Add diagrams (Mermaid or ASCII). \n- Update headers to match version numbers (v0.3.1, v0.1.1, etc.).\n\n---\n\n## 🧾 **Optional: Version tagging**\nWhen you finish a section (say, *Intake*), add a small line at the top:\n> ✅ **Verified for Lyra Intake v0.1.1** (updated Oct 2025)\n\nThat keeps your documentation version-aware without needing a separate changelog.\n\n---\n\nIf you want, I can help you **prioritize which sections to fill first** (based on what’s critical for you to remember vs. what’s obvious from code). \nWant me to make that short priority order list next?" } ] }