{ "title": "10/27-neomem update", "messages": [ { "role": "user", "content": "So i want to redo nvgram. the name is too close to NVGRAM and i think it'll get confusing. Lets rename it and then reimplement it and make sure we get the docker-compose.yml updated as well as the .env" }, { "role": "tool", "content": "All the files uploaded by the user have been fully loaded. Searching won't provide additional information." }, { "role": "assistant", "content": "Perfect — we can definitely redo **NVGRAM** under a cleaner name and re-implement it fresh. \nLet’s go step-by-step so it’s smooth and not confusing.\n\n---\n\n### 🧩 Step 1 — Pick a New Name\nIt should be short, unique, and descriptive. Here are a few quick ideas:\n\n| Option | Meaning | Notes |\n|--------|----------|-------|\n| **LyraMem** | Lyra Memory | clean + direct |\n| **AstraMem** | “star memory” | fits Lyra constellation theme |\n| **NeuroVault** | memory vault vibe | a bit dramatic but catchy |\n| **GraphMind** | emphasizes Neo4j graph side | clear technical focus |\n| **Mnemonic** | memory term | elegant but common word |\n| **EchoMem** | memories as echoes | poetic + distinct |\n\nWhich one do you like? \nOnce you pick, I’ll guide you through:\n\n1. Renaming folders, service names, and environment variables \n2. Updating `docker-compose.yml` and `.env` \n3. Adjusting `README` and `CHANGELOG` entries \n\nOnly a few lines per step — no walls of text." }, { "role": "user", "content": "what structure in the brain houses ltm?" }, { "role": "assistant", "content": "Good question — the **hippocampus** is the key structure that consolidates **short-term** memories into **long-term memory (LTM)**. \n\nHere’s the quick breakdown: \n- 🧠 **Hippocampus** — acts like the brain’s “save button”; converts new experiences into lasting memories. \n- 🏗️ **Neocortex** — where those long-term memories are actually *stored* once consolidated (distributed across sensory and association areas). \n- ⚙️ **Amygdala** — tags emotional importance, strengthening some LTMs (especially fear or reward memories). \n- 🌀 **Basal ganglia & cerebellum** — handle procedural or motor LTMs (like riding a bike). \n\nSo: **hippocampus → neocortex** pipeline = the core long-term memory system. \n\nWould you like me to tie that into how we might name or model the new NVGRAM replacement after that biological structure?" }, { "role": "user", "content": "so how about something like NeoMem? or just lyra-neo? suggestions?" }, { "role": "assistant", "content": "Excellent direction — tying it to the **hippocampus → neocortex** idea fits perfectly with Lyra’s architecture. \nHere’s how those two options stack up, plus a few close relatives:\n\n| Name | Meaning / Inspiration | Pros | Cons |\n|------|------------------------|------|------|\n| **NeoMem** | “Neocortical Memory” | Short, readable, implies evolution beyond NVGRAM | Slightly generic — could overlap with other “neo” tech names |\n| **Lyra-Neo** | “Lyra’s Neocortex” | Ties clearly to Lyra brand; fits your multi-module “brain” metaphor | Sounds more like an *umbrella module* (reasoning layer) than a DB |\n| **NeoVault** | “New vault of memories” | Feels strong + secure | A bit dramatic, might not fit technical naming style |\n| **Cortexa** | From *cortex* | Distinct and modern, sounds like a sub-brain system | Slightly sci-fi if you want a grounded tone |\n| **Lyra-Mem** | Simple and clear | Perfect continuity with Lyra branding | Doesn’t signal Neo4j/vector sophistication |\n| **Graphene** | Wordplay on “graph” + “gene” | Cool technical vibe | Might confuse with actual graphene material |\n| **Cortex-Mem** | Self-descriptive and modular | Matches your cortex VM theme | Maybe too literal |\n\nIf the goal is to position it as **Lyra’s long-term memory store**, I’d recommend:\n\n> ⭐ **NeoMem** — short, smart, and conceptually grounded (neocortex = long-term store). \n> You could still prefix it internally as `lyra-neomem` for repo and service names.\n\n---\n\nWould you like to go with **NeoMem**, or do you want a couple of slightly more poetic/spiritual options (like “EchoVault” or “Mneme,” after the Greek muse of memory) before we lock it in?" }, { "role": "user", "content": "lets do neomem" }, { "role": "assistant", "content": "Perfect — **NeoMem** it is. 🧠 \nIt’s clean, fits the biological metaphor, and is easy to remember and type.\n\nLet’s start small and tidy:\n\n---\n\n### 🪜 Step 1 — Rename Core References\nWe’ll phase out **NVGRAM** → **NEOMEM** everywhere, but we’ll do it in order.\n\n1. **Folder / Repo rename** \n If your existing project folder is `~/lyra-nvgram/`, rename it:\n ```bash\n mv lyra-nvgram lyra-neomem\n ```\n\n2. **Service name change** \n Inside the new folder, open `docker-compose.nvgram.yml` and change:\n ```yaml\n services:\n nvgram-api:\n ```\n → \n ```yaml\n services:\n neomem-api:\n ```\n And update port/env references to `NEOMEM_API` instead of `NVGRAM_API`.\n\n3. **.env entry** \n Replace:\n ```\n NVGRAM_API=http://nvgram-api:7077\n ```\n with:\n ```\n NEOMEM_API=http://neomem-api:7077\n ```\n\n---\n\nIf you’d like, I can show you the exact full `docker-compose.neomem.yml` and `.env` replacements next so it all builds cleanly. \nWant to go ahead with that?" }, { "role": "user", "content": "services:\n neomem-postgres:\n image: ankane/pgvector:v0.5.1\n container_name: neomem-postgres\n restart: unless-stopped\n environment:\n POSTGRES_USER: neomem\n POSTGRES_PASSWORD: neomempass\n POSTGRES_DB: neomem\n volumes:\n - postgres_data:/var/lib/postgresql/data\n ports:\n - \"5432:5432\"\n healthcheck:\n test: [\"CMD-SHELL\", \"pg_isready -U neomem -d neomem || exit 1\"]\n interval: 5s\n timeout: 5s\n retries: 10\n networks:\n - lyra-net\n\n neomem-neo4j:\n image: neo4j:5\n container_name: neomem-neo4j\n restart: unless-stopped\n environment:\n NEO4J_AUTH: neo4j/neomemgraph\n ports:\n - \"7474:7474\"\n - \"7687:7687\"\n volumes:\n - neo4j_data:/data\n healthcheck:\n test: [\"CMD-SHELL\", \"cypher-shell -u neo4j -p neomemgraph 'RETURN 1' || exit 1\"]\n interval: 10s\n timeout: 10s\n retries: 10\n networks:\n - lyra-net\n\n neomem:\n build: .\n image: lyra-neomem:latest\n container_name: neomem-api\n restart: unless-stopped\n ports:\n - \"7077:7077\"\n env_file:\n - .env.neomem\n volumes:\n - ./neomem_history:/app/history\n depends_on:\n neomem-postgres:\n condition: service_healthy\n neomem-neo4j:\n condition: service_healthy\n networks:\n - lyra-net\n\nvolumes:\n postgres_data:\n neo4j_data:\n\nnetworks:\n lyra-net:\n external: true\n\n# 🧠 NVGRAM API\nNVGRAM_API_KEY=supersecrettoken123\nNVGRAM_HISTORY_DB=postgresql://nvgram:nvgrampass@nvgram-postgres:5432/nvgram\n\n# 🗄️ Postgres\nPOSTGRES_USER=nvgram\nPOSTGRES_PASSWORD=nvgrampass\nPOSTGRES_DB=nvgram\nPOSTGRES_HOST=nvgram-postgres\n\n# 🔗 Neo4j (for NVGRAM)\nNEO4J_URI=bolt://nvgram-neo4j:7687\nNEO4J_USERNAME=neo4j\nNEO4J_PASSWORD=nvgramgraph\nNEO4J_AUTH=neo4j/nvgramgraph\n\n\n# 🤖 Local reasoning model (Ollama on 3090)\nLLM_PROVIDER=ollama\nLLM_MODEL=qwen2.5:7b-instruct-q4_K_M\nLLM_API_BASE=http://10.0.0.3:11434\n\nOLLAMA_HOST=http://10.0.0.3:11434\nOLLAMA_BASE_URL=http://10.0.0.3:11434\n\n# 🔡 Embeddings (OpenAI)\nEMBEDDER_PROVIDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-proj-lRX1sd6.......\n\nI renamed it to docker-compose.yml and just .env. Got rid of all the weird shit. I want to clean this up " }, { "role": "assistant", "content": "Nice work — that’s already a clean base. \nLet’s tidy it up into a fully standardized and readable version. \n\nWe’ll: \n✅ unify naming (`neomem-*` across services and env) \n✅ remove old `NVGRAM_` leftovers \n✅ group `.env` logically \n✅ keep comments minimal but useful \n\n---\n\n### ✅ Clean Final — `docker-compose.yml`\n```yaml\nversion: \"3.9\"\n\nservices:\n neomem-postgres:\n image: ankane/pgvector:v0.5.1\n container_name: neomem-postgres\n restart: unless-stopped\n environment:\n POSTGRES_USER: neomem\n POSTGRES_PASSWORD: neomempass\n POSTGRES_DB: neomem\n volumes:\n - postgres_data:/var/lib/postgresql/data\n ports:\n - \"5432:5432\"\n healthcheck:\n test: [\"CMD-SHELL\", \"pg_isready -U neomem -d neomem || exit 1\"]\n interval: 5s\n timeout: 5s\n retries: 10\n networks:\n - lyra-net\n\n neomem-neo4j:\n image: neo4j:5\n container_name: neomem-neo4j\n restart: unless-stopped\n environment:\n NEO4J_AUTH: neo4j/neomemgraph\n ports:\n - \"7474:7474\"\n - \"7687:7687\"\n volumes:\n - neo4j_data:/data\n healthcheck:\n test: [\"CMD-SHELL\", \"cypher-shell -u neo4j -p neomemgraph 'RETURN 1' || exit 1\"]\n interval: 10s\n timeout: 10s\n retries: 10\n networks:\n - lyra-net\n\n neomem-api:\n build: .\n image: lyra-neomem:latest\n container_name: neomem-api\n restart: unless-stopped\n ports:\n - \"7077:7077\"\n env_file:\n - .env\n volumes:\n - ./neomem_history:/app/history\n depends_on:\n neomem-postgres:\n condition: service_healthy\n neomem-neo4j:\n condition: service_healthy\n networks:\n - lyra-net\n\nvolumes:\n postgres_data:\n neo4j_data:\n\nnetworks:\n lyra-net:\n external: true\n```\n\n---\n\n### ✅ Clean Final — `.env`\n```bash\n# 🌌 NeoMem API\nNEOMEM_API=http://neomem-api:7077\nNEOMEM_API_KEY=supersecrettoken123\nNEOMEM_HISTORY_DB=postgresql://neomem:neomempass@neomem-postgres:5432/neomem\n\n# 🗄️ Postgres\nPOSTGRES_USER=neomem\nPOSTGRES_PASSWORD=neomempass\nPOSTGRES_DB=neomem\nPOSTGRES_HOST=neomem-postgres\n\n# 🔗 Neo4j\nNEO4J_URI=bolt://neomem-neo4j:7687\nNEO4J_USERNAME=neo4j\nNEO4J_PASSWORD=neomemgraph\nNEO4J_AUTH=neo4j/neomemgraph\n\n# 🤖 Local reasoning model (Ollama on 3090)\nLLM_PROVIDER=ollama\nLLM_MODEL=qwen2.5:7b-instruct-q4_K_M\nLLM_API_BASE=http://10.0.0.3:11434\n\n# 🔡 Embeddings (OpenAI)\nEMBEDDER_PROVIDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-proj-lRX1sd6.......\n```\n\n---\n\nWould you like me to give you the **updated README.md snippet** next (the part that describes NeoMem’s setup + curl test), so your documentation matches this new name too?" }, { "role": "user", "content": "when im trying to delete stuff via WINSCP i get permission denied a lot. I want to remove a hand full of folders that are old and wont go away" }, { "role": "assistant", "content": "Yeah — that’s a classic Linux file permission thing, especially inside Docker folders. \nLet’s fix it step-by-step without breaking anything. \n\n---\n\n### 🧹 Step 1 — Check ownership\nOpen an SSH terminal into the same machine where you’re using WinSCP and run:\n```bash\nls -l /path/to/the/folder\n```\nYou’ll probably see something like:\n```\ndrwxr-xr-x 3 root root 4096 Oct 27 23:00 old_folder\n```\nIf the owner is `root`, WinSCP (running as your normal user) can’t delete it.\n\n---\n\n### 🧰 Step 2 — Delete as root via SSH\nThe safest way is to delete it from the terminal instead of WinSCP:\n```bash\nsudo rm -rf /path/to/old_folder\n```\n\nIf it’s inside a Docker volume path like `/var/lib/docker/volumes/...`, stop containers first:\n```bash\ndocker compose down\nsudo rm -rf /var/lib/docker/volumes/your_volume_name\n```\n\n---\n\n### 🪄 Step 3 — Optional: make WinSCP use sudo\nIf you want to delete from WinSCP’s GUI instead:\n1. In WinSCP, go to **Preferences → Panels → Remote** \n2. Check **“Execute sudo on startup”** \n3. Reconnect to your server \n4. It’ll now run file commands with elevated permissions (you’ll be prompted for your password once)\n\n---\n\nIf you tell me roughly *where* those stubborn folders are (e.g., `/home/user/lyra-old`, `/var/lib/docker/volumes`, or `/opt/...`), I can give you the safest exact command to nuke them without touching live containers." }, { "role": "user", "content": "awesome that cleaned a lot up " }, { "role": "assistant", "content": "Perfect 😎 nice work — that’s one of those small but deeply satisfying cleanups. \n\nNow that the clutter’s gone and we’ve got a clean **NeoMem** base, want to go ahead and update the `README.md` to reflect the rename (so everything lines up with the new compose + env)? \n\nIt’ll just be a short section — “Setup,” “Verify,” and “Integration Notes” rewritten for **NeoMem**." }, { "role": "user", "content": "can i just go through the relay server.js and find and replace all the nvgram to neomem ?" }, { "role": "assistant", "content": "Yep 👍 that’s exactly the right move — a **find-and-replace** sweep is all it takes, *as long as we’re careful about variable names*. \n\nHere’s how to do it safely:\n\n---\n\n### 🪜 Step-by-step\n\n1. **Open the file** \n ```bash\n nano server.js\n ```\n or open it in VS Code / Notepad++ — whichever editor you like.\n\n2. **Search and replace (case-sensitive):** \n Replace these everywhere:\n\n | Old | New |\n |------|------|\n | `NVGRAM` | `NEOMEM` |\n | `nvgram` | `neomem` |\n\n (This covers both environment variables and URLs like `http://nvgram-api:7077`.)\n\n3. **Don’t touch unrelated variables** \n For example, skip anything like `ENVIRONMENT` or `CONVNGRAM` (rare, but check before saving).\n\n4. **Save & test**\n ```bash\n docker compose down\n docker compose up --build -d\n ```\n Then verify it connects:\n ```bash\n curl http://localhost:7077/health\n ```\n\n You should see something like:\n ```json\n {\"status\":\"ok\",\"service\":\"NeoMem API\",\"version\":\"0.1.0\"}\n ```\n\n---\n\nIf you want, I can show you the exact **expected lines in server.js** that reference `nvgram` (so you can confirm you got them all) — want me to list those targets?" }, { "role": "user", "content": "import logging\nimport os\nfrom typing import Any, Dict, List, Optional\n\nfrom dotenv import load_dotenv\nfrom fastapi import FastAPI, HTTPException\nfrom fastapi.responses import JSONResponse, RedirectResponse\nfrom pydantic import BaseModel, Field\n\nfrom neomem import Memory\n\nlogging.basicConfig(level=logging.INFO, format=\"%(asctime)s - %(levelname)s - %(message)s\")\n\n# Load environment variables\nload_dotenv()\n\n\nPOSTGRES_HOST = os.environ.get(\"POSTGRES_HOST\", \"postgres\")\nPOSTGRES_PORT = os.environ.get(\"POSTGRES_PORT\", \"5432\")\nPOSTGRES_DB = os.environ.get(\"POSTGRES_DB\", \"postgres\")\nPOSTGRES_USER = os.environ.get(\"POSTGRES_USER\", \"postgres\")\nPOSTGRES_PASSWORD = os.environ.get(\"POSTGRES_PASSWORD\", \"postgres\")\nPOSTGRES_COLLECTION_NAME = os.environ.get(\"POSTGRES_COLLECTION_NAME\", \"memories\")\n\nNEO4J_URI = os.environ.get(\"NEO4J_URI\", \"bolt://neo4j:7687\")\nNEO4J_USERNAME = os.environ.get(\"NEO4J_USERNAME\", \"neo4j\")\nNEO4J_PASSWORD = os.environ.get(\"NEO4J_PASSWORD\", \"mem0graph\")\n\nMEMGRAPH_URI = os.environ.get(\"MEMGRAPH_URI\", \"bolt://localhost:7687\")\nMEMGRAPH_USERNAME = os.environ.get(\"MEMGRAPH_USERNAME\", \"memgraph\")\nMEMGRAPH_PASSWORD = os.environ.get(\"MEMGRAPH_PASSWORD\", \"mem0graph\")\n\nOPENAI_API_KEY = os.environ.get(\"OPENAI_API_KEY\")\nHISTORY_DB_PATH = os.environ.get(\"HISTORY_DB_PATH\", \"/app/history/history.db\")\n\n# Embedder settings (switchable by .env)\nEMBEDDER_PROVIDER = os.environ.get(\"EMBEDDER_PROVIDER\", \"openai\")\nEMBEDDER_MODEL = os.environ.get(\"EMBEDDER_MODEL\", \"text-embedding-3-small\")\nOLLAMA_HOST = os.environ.get(\"OLLAMA_HOST\") # only used if provider=ollama\n\n\nDEFAULT_CONFIG = {\n \"version\": \"v1.1\",\n \"vector_store\": {\n \"provider\": \"pgvector\",\n \"config\": {\n \"host\": POSTGRES_HOST,\n \"port\": int(POSTGRES_PORT),\n \"dbname\": POSTGRES_DB,\n \"user\": POSTGRES_USER,\n \"password\": POSTGRES_PASSWORD,\n \"collection_name\": POSTGRES_COLLECTION_NAME,\n },\n },\n \"graph_store\": {\n \"provider\": \"neo4j\",\n \"config\": {\"url\": NEO4J_URI, \"username\": NEO4J_USERNAME, \"password\": NEO4J_PASSWORD},\n },\n \"llm\": {\n \"provider\": os.getenv(\"LLM_PROVIDER\", \"ollama\"),\n \"config\": {\n \"model\": os.getenv(\"LLM_MODEL\", \"qwen2.5:7b-instruct-q4_K_M\"),\n \"ollama_base_url\": os.getenv(\"LLM_API_BASE\") or os.getenv(\"OLLAMA_BASE_URL\"),\n \"temperature\": float(os.getenv(\"LLM_TEMPERATURE\", \"0.2\")),\n },\n },\n \"embedder\": {\n \"provider\": EMBEDDER_PROVIDER,\n \"config\": {\n \"model\": EMBEDDER_MODEL,\n \"embedding_dims\": int(os.environ.get(\"EMBEDDING_DIMS\", \"1536\")),\n \"openai_base_url\": os.getenv(\"OPENAI_BASE_URL\"),\n \"api_key\": OPENAI_API_KEY\n },\n },\n \"history_db_path\": HISTORY_DB_PATH,\n}\n\nimport time\nfrom fastapi import FastAPI\n\n# single app instance\napp = FastAPI(\n title=\"NEOMEM REST APIs\",\n description=\"A REST API for managing and searching memories for your AI Agents and Apps.\",\n version=\"0.2.0\",\n)\n\nstart_time = time.time()\n\n@app.get(\"/health\")\ndef health_check():\n uptime = round(time.time() - start_time, 1)\n return {\n \"status\": \"ok\",\n \"service\": \"NEOMEM\",\n \"version\": DEFAULT_CONFIG.get(\"version\", \"unknown\"),\n \"uptime_seconds\": uptime,\n \"message\": \"API reachable\"\n }\n\nprint(\">>> Embedder config:\", DEFAULT_CONFIG[\"embedder\"])\n\n# Wait for Neo4j connection before creating Memory instance\nfor attempt in range(10): # try for about 50 seconds total\n try:\n MEMORY_INSTANCE = Memory.from_config(DEFAULT_CONFIG)\n print(f\"✅ Connected to Neo4j on attempt {attempt + 1}\")\n break\n except Exception as e:\n print(f\"⏳ Waiting for Neo4j (attempt {attempt + 1}/10): {e}\")\n time.sleep(5)\nelse:\n raise RuntimeError(\"❌ Could not connect to Neo4j after 10 attempts\")\n\nclass Message(BaseModel):\n role: str = Field(..., description=\"Role of the message (user or assistant).\")\n content: str = Field(..., description=\"Message content.\")\n\n\nclass MemoryCreate(BaseModel):\n messages: List[Message] = Field(..., description=\"List of messages to store.\")\n user_id: Optional[str] = None\n agent_id: Optional[str] = None\n run_id: Optional[str] = None\n metadata: Optional[Dict[str, Any]] = None\n\n\nclass SearchRequest(BaseModel):\n query: str = Field(..., description=\"Search query.\")\n user_id: Optional[str] = None\n run_id: Optional[str] = None\n agent_id: Optional[str] = None\n filters: Optional[Dict[str, Any]] = None\n\n\n@app.post(\"/configure\", summary=\"Configure Mem0\")\ndef set_config(config: Dict[str, Any]):\n \"\"\"Set memory configuration.\"\"\"\n global MEMORY_INSTANCE\n MEMORY_INSTANCE = Memory.from_config(config)\n return {\"message\": \"Configuration set successfully\"}\n\n\n@app.post(\"/memories\", summary=\"Create memories\")\ndef add_memory(memory_create: MemoryCreate):\n \"\"\"Store new memories.\"\"\"\n if not any([memory_create.user_id, memory_create.agent_id, memory_create.run_id]):\n raise HTTPException(status_code=400, detail=\"At least one identifier (user_id, agent_id, run_id) is required.\")\n\n params = {k: v for k, v in memory_create.model_dump().items() if v is not None and k != \"messages\"}\n try:\n response = MEMORY_INSTANCE.add(messages=[m.model_dump() for m in memory_create.messages], **params)\n return JSONResponse(content=response)\n except Exception as e:\n logging.exception(\"Error in add_memory:\") # This will log the full traceback\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.get(\"/memories\", summary=\"Get memories\")\ndef get_all_memories(\n user_id: Optional[str] = None,\n run_id: Optional[str] = None,\n agent_id: Optional[str] = None,\n):\n \"\"\"Retrieve stored memories.\"\"\"\n if not any([user_id, run_id, agent_id]):\n raise HTTPException(status_code=400, detail=\"At least one identifier is required.\")\n try:\n params = {\n k: v for k, v in {\"user_id\": user_id, \"run_id\": run_id, \"agent_id\": agent_id}.items() if v is not None\n }\n return MEMORY_INSTANCE.get_all(**params)\n except Exception as e:\n logging.exception(\"Error in get_all_memories:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.get(\"/memories/{memory_id}\", summary=\"Get a memory\")\ndef get_memory(memory_id: str):\n \"\"\"Retrieve a specific memory by ID.\"\"\"\n try:\n return MEMORY_INSTANCE.get(memory_id)\n except Exception as e:\n logging.exception(\"Error in get_memory:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.post(\"/search\", summary=\"Search memories\")\ndef search_memories(search_req: SearchRequest):\n \"\"\"Search for memories based on a query.\"\"\"\n try:\n params = {k: v for k, v in search_req.model_dump().items() if v is not None and k != \"query\"}\n return MEMORY_INSTANCE.search(query=search_req.query, **params)\n except Exception as e:\n logging.exception(\"Error in search_memories:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.put(\"/memories/{memory_id}\", summary=\"Update a memory\")\ndef update_memory(memory_id: str, updated_memory: Dict[str, Any]):\n \"\"\"Update an existing memory with new content.\n \n Args:\n memory_id (str): ID of the memory to update\n updated_memory (str): New content to update the memory with\n \n Returns:\n dict: Success message indicating the memory was updated\n \"\"\"\n try:\n return MEMORY_INSTANCE.update(memory_id=memory_id, data=updated_memory)\n except Exception as e:\n logging.exception(\"Error in update_memory:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.get(\"/memories/{memory_id}/history\", summary=\"Get memory history\")\ndef memory_history(memory_id: str):\n \"\"\"Retrieve memory history.\"\"\"\n try:\n return MEMORY_INSTANCE.history(memory_id=memory_id)\n except Exception as e:\n logging.exception(\"Error in memory_history:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.delete(\"/memories/{memory_id}\", summary=\"Delete a memory\")\ndef delete_memory(memory_id: str):\n \"\"\"Delete a specific memory by ID.\"\"\"\n try:\n MEMORY_INSTANCE.delete(memory_id=memory_id)\n return {\"message\": \"Memory deleted successfully\"}\n except Exception as e:\n logging.exception(\"Error in delete_memory:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.delete(\"/memories\", summary=\"Delete all memories\")\ndef delete_all_memories(\n user_id: Optional[str] = None,\n run_id: Optional[str] = None,\n agent_id: Optional[str] = None,\n):\n \"\"\"Delete all memories for a given identifier.\"\"\"\n if not any([user_id, run_id, agent_id]):\n raise HTTPException(status_code=400, detail=\"At least one identifier is required.\")\n try:\n params = {\n k: v for k, v in {\"user_id\": user_id, \"run_id\": run_id, \"agent_id\": agent_id}.items() if v is not None\n }\n MEMORY_INSTANCE.delete_all(**params)\n return {\"message\": \"All relevant memories deleted\"}\n except Exception as e:\n logging.exception(\"Error in delete_all_memories:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.post(\"/reset\", summary=\"Reset all memories\")\ndef reset_memory():\n \"\"\"Completely reset stored memories.\"\"\"\n try:\n MEMORY_INSTANCE.reset()\n return {\"message\": \"All memories reset\"}\n except Exception as e:\n logging.exception(\"Error in reset_memory:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.get(\"/\", summary=\"Redirect to the OpenAPI documentation\", include_in_schema=False)\ndef home():\n \"\"\"Redirect to the OpenAPI documentation.\"\"\"\n return RedirectResponse(url=\"/docs\")\n\nAnything else i need to mess with to get it to work?" }, { "role": "assistant", "content": "That file already looks **really solid** — you’ve basically completed the rename cleanly. 👏 \nThere are just a couple of **tiny polish items** to make it fully consistent and avoid stray “Mem0” references. \n\nHere’s the quick checklist 👇 \n\n---\n\n### ✅ 1. Update the `/configure` route docstring + summary \nRight now it says \n```python\n@app.post(\"/configure\", summary=\"Configure Mem0\")\n```\nChange to: \n```python\n@app.post(\"/configure\", summary=\"Configure NeoMem\")\n```\n\n---\n\n### ✅ 2. Clean up leftover variable defaults\nYou still have some fallback defaults referencing `mem0graph` or `memgraph`:\n```python\nNEO4J_PASSWORD = os.environ.get(\"NEO4J_PASSWORD\", \"mem0graph\")\nMEMGRAPH_PASSWORD = os.environ.get(\"MEMGRAPH_PASSWORD\", \"mem0graph\")\n```\nYou can safely change both to:\n```python\nNEO4J_PASSWORD = os.environ.get(\"NEO4J_PASSWORD\", \"neomemgraph\")\nMEMGRAPH_PASSWORD = os.environ.get(\"MEMGRAPH_PASSWORD\", \"neomemgraph\")\n```\n\n*(That keeps your fallback consistent with your `.env` file.)*\n\n---\n\n### ✅ 3. Verify the import\nYou have:\n```python\nfrom neomem import Memory\n```\nMake sure that your local package folder is actually named `neomem` \n(i.e. `neomem/Memory.py` or `neomem/__init__.py` exists). \nIf it still lives in a folder called `nvgram`, rename that directory to `neomem`.\n\n---\n\n### ✅ 4. Optional cosmetic tweaks\nUpdate the app title and version block:\n```python\napp = FastAPI(\n title=\"NeoMem REST API\",\n description=\"A REST API for managing and searching memories for Lyra.\",\n version=\"0.2.0\",\n)\n```\n\n---\n\n### ✅ 5. Quick test\nOnce that’s saved, rebuild and test:\n```bash\ndocker compose down\ndocker compose up --build -d\n```\nThen run:\n```bash\ncurl http://localhost:7077/health\n```\n\nExpected output:\n```json\n{\n \"status\": \"ok\",\n \"service\": \"NEOMEM\",\n \"version\": \"v1.1\",\n \"uptime_seconds\": 2.5,\n \"message\": \"API reachable\"\n}\n```\n\n---\n\nIf that returns clean JSON and you see \n`✅ Connected to Neo4j on attempt 1` \nin the logs — you’re **fully migrated and live**. \n\nWould you like a one-line README “Quick Start” snippet next (so you can verify NeoMem in a curl test and document the rename)?" }, { "role": "user", "content": "how do i prune and remove orphans when i do docker compose down?" }, { "role": "assistant", "content": "Excellent timing — this is one of the best habits you can build while iterating on Docker stacks like Lyra. 👇 \n\n---\n\n### 🧹 **To remove everything tied to your compose stack (containers + networks + volumes):**\n\n```bash\ndocker compose down --volumes --remove-orphans\n```\n\n**Breakdown:**\n- `--volumes` → deletes named & anonymous volumes created by this stack (cleans Postgres + Neo4j data if you want a fresh start)\n- `--remove-orphans` → removes any containers still running from old service names (like your retired `nvgram-*`)\n\n---\n\n### 🧽 **Optional deep clean (if you want to reclaim disk space):**\nAfter the stack is down:\n```bash\ndocker system prune -af --volumes\n```\nThat nukes:\n- Unused images \n- Stopped containers \n- Dangling volumes \n- Build cache \n\n*(The `-a` flag removes **all** unused images, not just dangling ones — safe if you rebuild often.)*\n\n---\n\n### ⚠️ Quick Safety Rule\nIf you want to reset **just NeoMem’s databases** but not everything:\n```bash\ndocker compose down\ndocker volume rm lyra-neomem_postgres_data lyra-neomem_neo4j_data\n```\n\nThen bring it back up fresh:\n```bash\ndocker compose up -d --build\n```\n\n---\n\nWould you like me to show a short “refresh.sh” one-liner script that does a full down → prune → rebuild cleanly for NeoMem? It’s handy for testing new versions." }, { "role": "user", "content": "serversdown@lyra-core:~/project-lyra/lyra-neomem$ docker ps\nCONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES\ncb6160893070 nginx:alpine \"/docker-entrypoint.…\" 42 minutes ago Up 42 minutes 0.0.0.0:8081->80/tcp, [::]:8081->80/tcp lyra-ui\nc26bea89d873 lyra-core-relay \"docker-entrypoint.s…\" 42 minutes ago Up 42 minutes 0.0.0.0:7078->7078/tcp, [::]:7078->7078/tcp relay\n878e18003139 lyra-nvgram:latest \"uvicorn nvgram.main…\" 43 minutes ago Up 43 minutes 0.0.0.0:7077->7077/tcp, [::]:7077->7077/tcp nvgram-api\nf9f8e8e4c766 ankane/pgvector:v0.5.1 \"docker-entrypoint.s…\" 43 minutes ago Up 43 minutes (healthy) 0.0.0.0:5432->5432/tcp, [::]:5432->5432/tcp nvgram-postgres\ne83651c1166d neo4j:5 \"tini -g -- /startup…\" 43 minutes ago Up 43 minutes (healthy) 0.0.0.0:7474->7474/tcp, [::]:7474->7474/tcp, 7473/tcp, 0.0.0.0:7687->7687/tcp, [::]:7687->7687/tcp nvgram-neo4j\n2b1c42d64f77 lyra-core-persona-sidecar \"docker-entrypoint.s…\" 3 days ago Up 11 hours 0.0.0.0:7080->7080/tcp, [::]:7080->7080/tcp persona-sidecar\nserversdown@lyra-core:~/project-lyra/lyra-neomem$ docker compose down\nWARN[0000] Warning: No resource found to remove for project \"lyra-neomem\"." }, { "role": "assistant", "content": "Ah — that warning tells us Docker doesn’t see your running `nvgram-*` containers as part of the **current compose project** (`lyra-neomem`). \n\nThat’s totally normal when you renamed things — Docker Compose tracks containers by the **`project name`** embedded in labels (from your folder name or `-p` flag). \n\nHere’s how to clean it up properly 👇 \n\n---\n\n### 🧩 Step 1 — Check the current project names\nRun:\n```bash\ndocker ps --format '{{.Names}}'\n```\nYou’ll see things like:\n```\nnvgram-api\nnvgram-postgres\nnvgram-neo4j\nrelay\nlyra-ui\npersona-sidecar\n```\n\nThose `nvgram-*` ones belong to the **old stack**, not `lyra-neomem`.\n\n---\n\n### 🧹 Step 2 — Stop and remove the old ones manually\n```bash\ndocker stop nvgram-api nvgram-postgres nvgram-neo4j\ndocker rm nvgram-api nvgram-postgres nvgram-neo4j\n```\n\nYou can double-check:\n```bash\ndocker ps -a | grep nvgram\n```\nIf nothing shows, they’re gone. ✅\n\n---\n\n### 🧽 Step 3 — Optionally remove the old volumes\nTo start with clean databases:\n```bash\ndocker volume rm lyra-core_nvgram-postgres_data lyra-core_nvgram-neo4j_data 2>/dev/null || true\n```\n(If you get “no such volume,” that’s fine — it’s already gone.)\n\n---\n\n### 🏗️ Step 4 — Rebuild the new NeoMem stack\nFrom inside your `lyra-neomem/` directory:\n```bash\ndocker compose up -d --build\n```\nThen confirm:\n```bash\ndocker ps\n```\nYou should now see:\n```\nneomem-api\nneomem-postgres\nneomem-neo4j\n```\n\n---\n\nWould you like me to show a short script (`refresh-neomem.sh`) that automates all those cleanup steps in one go for future upgrades?" }, { "role": "user", "content": "\nserversdown@lyra-core:~/project-lyra/lyra-neomem$ docker ps\nCONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES\nd2fe5a5869c2 lyra-neomem:latest \"uvicorn neomem.main…\" 59 seconds ago Up 45 seconds 0.0.0.0:7077->7077/tcp, [::]:7077->7077/tcp neomem-api\ndb5e8a68ac62 ankane/pgvector:v0.5.1 \"docker-entrypoint.s…\" 59 seconds ago Up 58 seconds (healthy) 0.0.0.0:5432->5432/tcp, [::]:5432->5432/tcp neomem-postgres\n19a70fbc4fd4 neo4j:5 \"tini -g -- /startup…\" 59 seconds ago Up 58 seconds (healthy) 0.0.0.0:7474->7474/tcp, [::]:7474->7474/tcp, 7473/tcp, 0.0.0.0:7687->7687/tcp, [::]:7687->7687/tcp neomem-neo4j\ncb6160893070 nginx:alpine \"/docker-entrypoint.…\" 46 minutes ago Up 46 minutes 0.0.0.0:8081->80/tcp, [::]:8081->80/tcp lyra-ui\nc26bea89d873 lyra-core-relay \"docker-entrypoint.s…\" 46 minutes ago Up 46 minutes 0.0.0.0:7078->7078/tcp, [::]:7078->7078/tcp relay\nserversdown@lyra-core:~/project-lyra/lyra-neomem$\n\nLooks correct to me" }, { "role": "assistant", "content": "Yep — that’s a perfect lineup ✅ \n\nYou’ve got: \n- **neomem-api** → running cleanly on 7077 \n- **neomem-postgres** → healthy \n- **neomem-neo4j** → healthy \n- Relay + UI still connected on 7078 / 8081 \n\nEverything’s named correctly, no orphaned `nvgram-*` containers, and the health checks are all green. \n\nNext quick sanity check (just to be thorough): \n```bash\ncurl http://localhost:7077/health\n```\nIf you see a JSON block like \n```json\n{\"status\":\"ok\",\"service\":\"NEOMEM\",\"version\":\"v1.1\",\"message\":\"API reachable\"}\n``` \nyou’re officially **fully migrated and live** under NeoMem. 🎉 \n\nWould you like me to show how to re-point Relay’s `.env` so it now calls `NEOMEM_API` instead of the old `NVGRAM_API`?" }, { "role": "user", "content": "already got that" }, { "role": "assistant", "content": "Perfect 👌 — then you’re 100 % migrated. \n\n✅ Containers renamed and healthy \n✅ `.env` and Compose cleaned \n✅ Relay pointed to `NEOMEM_API` \n✅ Old NVGRAM stack removed \n\nYou’ve basically completed the fork—**NeoMem v0.1.0** is live. \nNext natural step (if you feel like polishing) would be adding a `CHANGELOG.md` entry and updating the README’s “Setup” + “Verify” sections so anyone cloning the repo later sees `neomem` instead of `nvgram`. \n\nWant me to draft that short changelog block for this release?" }, { "role": "user", "content": "serversdown@lyra-core:~/project-lyra/lyra-neomem$ docker logs neomem-api -f\n>>> Embedder config: {'provider': 'openai', 'config': {'model': 'text-embedding-3-small', 'embedding_dims': 1536, 'openai_base_url': None, 'api_key': 'sk-proj-AAAAAAAAA...'}}\n2025-10-28 06:03:03,007 - INFO - Using psycopg (psycopg3) with ConnectionPool for PostgreSQL connections\n2025-10-28 06:03:03,526 - INFO - Inserting 1 vectors into collection mem0migrations\n✅ Connected to Neo4j on attempt 1\nINFO: Started server process [1]\nINFO: Waiting for application startup.\nINFO: Application startup complete.\nINFO: Uvicorn running on http://0.0.0.0:7077 (Press CTRL+C to quit)\n2025-10-28 06:06:20,435 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:20,436 - INFO - Total existing memories: 0\n2025-10-28 06:06:20,849 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:22,414 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:24,971 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:25,627 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:26,421 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:59,030 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:59,030 - INFO - Total existing memories: 0\n2025-10-28 06:06:59,157 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:00,328 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:01,649 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:01,844 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:02,063 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:20,529 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:20,943 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:20,943 - INFO - Total existing memories: 0\n2025-10-28 06:07:22,038 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:26,041 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:26,321 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:27,377 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:46,315 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:46,315 - INFO - Total existing memories: 0\n2025-10-28 06:07:46,472 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:48,172 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:50,016 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:50,245 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:50,888 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n\n\nSo this all looks good, but relay is still reporting no new memories" }, { "role": "assistant", "content": "Yep — your NeoMem logs look **perfect** (healthy connections, successful OpenAI + Ollama calls, vector inserts working). \nIf Relay says “no new memories,” that means the connection *from Relay → NeoMem* is alive but the **POST /memories** calls aren’t actually persisting. \n\nLet’s check a few quick suspects in order 👇 \n\n---\n\n### 🧩 Step 1 — Verify Relay’s `.env`\nMake sure you really swapped **every** instance of the old var:\n\n```bash\nNEOMEM_API=http://neomem-api:7077\n```\n\nand **removed** any leftover line like:\n```\nNVGRAM_API=http://nvgram-api:7077\n```\n\nRelay only reads the first match it finds — if both exist, it may still be pointing to the old one.\n\n---\n\n### 🧠 Step 2 — Confirm Relay can reach NeoMem directly\nFrom inside the Relay container:\n```bash\ndocker exec -it relay curl -s http://neomem-api:7077/health\n```\n✅ You should see:\n```json\n{\"status\":\"ok\",\"service\":\"NEOMEM\", ...}\n```\nIf that works, the network path is good.\n\n---\n\n### 🧾 Step 3 — Manually test NeoMem write\nFrom the **host**, run:\n```bash\ncurl -X POST http://localhost:7077/memories \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"messages\": [{\"role\": \"user\", \"content\": \"test memory\"}],\n \"user_id\": \"brian\"\n }'\n```\nIf you get a 200 with an `id`, the API is storing fine (so the issue’s on Relay’s side).\n\n---\n\n### ⚙️ Step 4 — Check Relay logs\n```bash\ndocker logs relay -f | grep mem\n```\nLook for:\n- `POST /memories -> 200` ✅ \n- or errors like `relay error Error: memAdd failed` ❌ \n\nIf you see the latter, it might still be calling the old `NVGRAM_API` internally — there’s a small block in `server.js` that defines the base URL like:\n\n```js\nconst MEM_API = process.env.NVGRAM_API || \"http://nvgram-api:7077\";\n```\n\n👉 Change that line to:\n\n```js\nconst MEM_API = process.env.NEOMEM_API || \"http://neomem-api:7077\";\n```\n\nThen rebuild Relay:\n```bash\ndocker compose up -d --build relay\n```\n\n---\n\n### 🧹 Step 5 — Retest memory loop\n1. Send a message through your Lyra UI \n2. Watch `docker logs neomem-api -f` \n → You should see `POST /memories -> 200` \n3. Watch `docker logs relay -f` \n → You should see “memories added successfully” or similar log lines \n\n---\n\nIf you paste the relevant few lines from your `relay/server.js` around where it defines the memory API URL, I can confirm whether it’s still wired to the old NVGRAM name. Want to show that snippet?" }, { "role": "user", "content": "\n📨 Sent exchange to Intake summarizer\n🛰️ Incoming request. Session: Test1\n🧠 Cortex annotations: {}\nmem.add took 5939ms\n😴 No memories found\nmem.search took 858ms\n\n==== Injected Prompt ====\n[\n {\n \"role\": \"system\",\n \"content\": \"Relevant memories:\\n\"\n },\n {\n \"role\": \"user\",\n \"content\": \"testing neomem how are you\"\n }\n]\n=========================\n\n📨 Sent exchange to Intake summarizer\n\nIts def connecting and sending " }, { "role": "assistant", "content": "Perfect — that log tells us **Relay is definitely talking to NeoMem** and getting 200s back (since you see `mem.add took 5939ms` ✅). \nThe only piece still off is that `mem.search` returns empty (`No memories found`). \nThat usually means NeoMem is writing fine, but when Relay searches again, it’s querying under a **different identifier set** — so the search endpoint isn’t matching anything.\n\nLet’s confirm with two tiny checks:\n\n---\n\n### 🧾 Step 1 — See what’s actually stored\nRun this on the host (or from inside the `neomem-api` container):\n```bash\ncurl -s -X GET \"http://localhost:7077/memories?user_id=Test1\" | jq\n```\n*(replace `Test1` with whatever Relay logs show for the Session or user_id)* \n\nIf you get `[]`, then Relay’s POST is using a different `user_id` / `agent_id` combo than its later search. \n\nIf you see data returned, then the search logic in Relay is filtering by the wrong field (e.g., `sessionId` instead of `user_id`).\n\n---\n\n### 🧩 Step 2 — Check how Relay builds the add/search payloads\nOpen `relay/server.js` and look for something like:\n```js\nawait mem.add({\n messages,\n sessionId: session_id,\n user_id: ...\n})\n```\nand later:\n```js\nawait mem.search({\n query: user_message,\n sessionId: session_id\n})\n```\n\n👉 If the `add()` uses `sessionId` but the `search()` uses `user_id` (or vice-versa), NeoMem will treat them as unrelated documents. \nThe easy fix is to make both use the same identifier key — usually `user_id`.\n\nExample consistent pattern:\n```js\nconst memoryPayload = {\n messages,\n user_id: session_id, // unify key\n}\n```\nand\n```js\nawait mem.search({ query, user_id: session_id })\n```\n\n---\n\n### ✅ If both match but still empty\nTry forcing a broader search:\n```bash\ncurl -s -X POST http://localhost:7077/search \\\n -H \"Content-Type: application/json\" \\\n -d '{\"query\":\"testing neomem how are you\"}' | jq\n```\nIf that returns hits, then it’s purely a filtering mismatch.\n\n---\n\nWant to paste the small parts of `server.js` that contain `mem.add(` and `mem.search(`? \nI can show you exactly what to align so Relay starts pulling the new memories back in its context." }, { "role": "user", "content": "serversdown@lyra-core:~/project-lyra/lyra-core$ curl -s -X GET \"http://localhost:7077/memories?user_id=Test1\" | jq\n{\n \"results\": [],\n \"relations\": []\n}\nserversdown@lyra-core:~/project-lyra/lyra-core$" }, { "role": "assistant", "content": "Got it — that confirms NeoMem isn’t storing the memory under the `user_id=Test1` key, even though Relay is calling `/memories`. \nSo the POST is going through fine, but the payload probably doesn’t include `user_id`, or it’s using a different field name (`sessionId`, `session_id`, etc.) that NeoMem doesn’t recognize. \n\nLet’s pinpoint it fast 👇 \n\n---\n\n### 🧩 Step 1 — Check what Relay is actually sending\nRun this from the **Relay container**, so you can capture the outbound JSON payload:\n\n```bash\ndocker logs relay -f | grep \"POST /memories\"\n```\n\nIf the logs don’t show body details, you can temporarily add a quick log right above the `mem.add(...)` call in `server.js`:\n\n```js\nconsole.log(\"🧠 ADD PAYLOAD:\", {\n messages,\n user_id,\n agent_id,\n run_id,\n session_id\n});\n```\n\nThen restart Relay (`docker compose up -d --build relay`) and send another test message.\n\nThis will show exactly which keys are being sent to NeoMem.\n\n---\n\n### 🧠 Step 2 — Why this matters\nNeoMem expects one of:\n```json\n{\n \"messages\": [...],\n \"user_id\": \"something\"\n}\n```\nIf Relay sends:\n```json\n{\n \"messages\": [...],\n \"sessionId\": \"something\"\n}\n```\nthen the NeoMem API silently inserts it but with no valid identifier — so it can’t be retrieved by `user_id`, `agent_id`, or `run_id`.\n\n---\n\n### 🧰 Step 3 — The quick fix\nOnce you see which key Relay is using, you can just normalize it in Relay’s memory helper:\n\n**Before:**\n```js\nawait mem.add({\n messages,\n sessionId: session_id\n});\n```\n\n**After:**\n```js\nawait mem.add({\n messages,\n user_id: session_id\n});\n```\n\nAnd same for search:\n```js\nawait mem.search({\n query,\n user_id: session_id\n});\n```\n\n---\n\nWould you like to paste the `mem.add(` and `mem.search(` blocks from Relay’s `server.js` here? \nI’ll tell you exactly which line to tweak so your memory loop becomes fully functional." }, { "role": "user", "content": "oh it should be under the user_id=brian i think. Let me check server.js" }, { "role": "assistant", "content": "Exactly — that’s the right intuition. 🧠 \n\nNeoMem doesn’t really care what the ID *is*, it just has to be **consistent** between `add()` and `search()`. \nSo if your Relay uses: \n\n```js\nuser_id: \"brian\"\n```\n\nthen every `search()` should also include:\n```js\nuser_id: \"brian\"\n```\n\nIf instead your `add()` uses `user_id: \"brian\"` but your `search()` uses `user_id: session_id` or something like `run_id: \"Test1\"`, you’ll get exactly what you saw: \n> Total existing memories: 0 \n\neven though data is sitting in the DB under a different tag.\n\n---\n\nHere’s what to look for in **Relay’s `server.js`**: \n\n```js\n// somewhere in mem.add\nawait mem.add({\n messages,\n user_id: process.env.DEFAULT_USER || \"brian\", // should match\n ...\n});\n\n// and in mem.search\nawait mem.search({\n query,\n user_id: process.env.DEFAULT_USER || \"brian\", // same key\n});\n```\n\nYou can hard-code `\"brian\"` just to verify the loop works — once confirmed, we can re-abstract it to pull from the active session.\n\n---\n\nWhen you find those two blocks, paste them here and I’ll mark the exact edits so you can test in one go." }, { "role": "user", "content": "import express from \"express\";\nimport dotenv from \"dotenv\";\nimport cors from \"cors\";\nimport { annotateWithCortex } from \"./cortex.js\";\n\ndotenv.config();\n\nconst app = express();\napp.use(cors());\napp.use(express.json());\n\n// Cache and normalize env flags/values once\nconst {\n NEOMEM_API,\n MEM0_API_KEY,\n OPENAI_API_KEY,\n OLLAMA_URL,\n PERSONA_URL,\n CORTEX_ENABLED,\n PORT: PORT_ENV,\n DEBUG_PROMPT,\n} = process.env;\n\nconst PORT = Number(PORT_ENV) || 7078;\nconst cortexEnabled = String(CORTEX_ENABLED).toLowerCase() === \"true\";\nconst debugPrompt = String(DEBUG_PROMPT).toLowerCase() === \"true\";\n\n// Basic env validation warnings (non-fatal)\nif (!NEOMEM_API || !MEM0_API_KEY) {\n console.warn(\"⚠️ NeoMem configuration missing: NEOMEM_API or MEM0_API_KEY not set.\");\n}\n\n/* ------------------------------\n Helpers for Mem0 REST API\n--------------------------------*/\n// Small helper for fetch with timeout + JSON + error detail\nasync function fetchJSON(url, options = {}, timeoutMs = 30000) {\n const controller = new AbortController();\n const t = setTimeout(() => controller.abort(), timeoutMs);\n try {\n const resp = await fetch(url, { ...options, signal: controller.signal });\n const text = await resp.text();\n const parsed = text ? JSON.parse(text) : null;\n if (!resp.ok) {\n const msg = parsed?.error || parsed?.message || text || resp.statusText;\n throw new Error(`${resp.status} ${msg}`);\n }\n return parsed;\n } finally {\n clearTimeout(t);\n }\n}\n\nasync function memAdd(content, userId, sessionId, cortexData) {\n const url = `${NEOMEM_API}/memories`;\n const payload = {\n messages: [{ role: \"user\", content }],\n user_id: userId,\n run_id: sessionId,\n metadata: { source: \"relay\", cortex: cortexData },\n };\n return fetchJSON(url, {\n method: \"POST\",\n headers: {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${MEM0_API_KEY}`,\n },\n body: JSON.stringify(payload),\n });\n}\n\nasync function memSearch(query, userId, sessionId) {\n const url = `${NEOMEM_API}/search`;\n const payload = { query, user_id: userId, run_id: sessionId };\n return fetchJSON(url, {\n method: \"POST\",\n headers: {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${MEM0_API_KEY}`,\n },\n body: JSON.stringify(payload),\n });\n}\n\n/* ------------------------------\n Utility to time spans\n--------------------------------*/\nasync function span(name, fn) {\n const start = Date.now();\n try {\n return await fn();\n } finally {\n console.log(`${name} took ${Date.now() - start}ms`);\n }\n}\n\n/* ------------------------------\n Healthcheck\n--------------------------------*/\napp.get(\"/_health\", (req, res) => {\n res.json({ ok: true, time: new Date().toISOString() });\n});\n\n/* ------------------------------\n Chat completion endpoint\n--------------------------------*/\napp.post(\"/v1/chat/completions\", async (req, res) => {\n try {\n const { model, messages, sessionId: clientSessionId } = req.body || {};\n if (!Array.isArray(messages) || !messages.length) {\n return res.status(400).json({ error: \"invalid_messages\" });\n }\n if (!model || typeof model !== \"string\") {\n return res.status(400).json({ error: \"invalid_model\" });\n }\n\n const sessionId = clientSessionId || \"default\";\n const userId = \"brian\"; // fixed for now\n\n console.log(`🛰️ Incoming request. Session: ${sessionId}`);\n\n // Find last user message efficiently\n const lastUserMsg = [...messages].reverse().find(m => m.role === \"user\")?.content;\n if (!lastUserMsg) {\n return res.status(400).json({ error: \"no_user_message\" });\n }\n\n // 1. Cortex (optional) + mem.add\n let cortexData = {};\n if (cortexEnabled) {\n try {\n cortexData = await annotateWithCortex(lastUserMsg);\n } catch (err) {\n console.warn(\"⚠️ Cortex disabled or unreachable, skipping.\");\n cortexData = {};\n }\n }\n\n await span(\"mem.add\", async () => {\n console.log(\"🧠 Cortex annotations:\", cortexData);\n if (NEOMEM_API && MEM0_API_KEY) {\n await memAdd(lastUserMsg, userId, sessionId, cortexData);\n }\n });\n\n\n // 2. Search memories\n let memorySnippets = [];\n await span(\"mem.search\", async () => {\n if (NEOMEM_API && MEM0_API_KEY) {\n try {\n const { results } = await memSearch(lastUserMsg, userId, sessionId);\n if (results?.length) {\n console.log(`📚 Mem0 hits: ${results.length}`);\n results.forEach((r, i) =>\n console.log(` ${i + 1}) ${r.memory} (score ${Number(r.score).toFixed(3)})`)\n );\n memorySnippets = results.map((r, i) => `${i + 1}) ${r.memory}`);\n } else {\n console.log(\"😴 No memories found\");\n }\n } catch (e) {\n console.warn(\"⚠️ mem.search failed:\", e.message);\n }\n }\n });\n\n // 3. Fetch persona\n/* let personaText = \"Persona: Lyra 🤖 friendly, concise, poker-savvy.\";\n await span(\"persona.fetch\", async () => {\n try {\n if (PERSONA_URL) {\n const data = await fetchJSON(PERSONA_URL);\n if (data?.persona) {\n const name = data.persona.name ?? \"Lyra\";\n const style = data.persona.style ?? \"friendly, concise\";\n const protocols = Array.isArray(data.persona.protocols) ? data.persona.protocols.join(\", \") : \"\";\n personaText = `Persona: ${name} 🤖 ${style}. Protocols: ${protocols}`.trim();\n }\n }\n } catch (err) {\n console.error(\"💥 persona.fetch failed\", err);\n }\n }); */\n\n // 4. Build final messages\n const injectedMessages = [\n // { role: \"system\", content: personaText }, persona sidecar removed temp //\n { role: \"system\", content: `Relevant memories:\\n${memorySnippets.join(\"\\n\")}` },\n ...messages,\n ];\n\n if (debugPrompt) {\n console.log(\"\\n==== Injected Prompt ====\");\n console.log(JSON.stringify(injectedMessages, null, 2));\n console.log(\"=========================\\n\");\n }\n\n // 5. Call LLM (OpenAI or Ollama)\n const isOllama = model.startsWith(\"ollama:\");\n const llmUrl = isOllama\n ? `${OLLAMA_URL}/api/chat`\n : \"https://api.openai.com/v1/chat/completions\";\n\n const llmHeaders = isOllama\n ? { \"Content-Type\": \"application/json\" }\n : {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${OPENAI_API_KEY}`,\n };\n\n const llmBody = {\n model: isOllama ? model.replace(\"ollama:\", \"\") : model,\n messages: injectedMessages,\n stream: false,\n };\n\n const data = await fetchJSON(llmUrl, {\n method: \"POST\",\n headers: llmHeaders,\n body: JSON.stringify(llmBody),\n });\n\t\n\t\t// 🔄 Forward user↔assistant exchange to Intake summarizer\n\tif (process.env.INTAKE_API_URL) {\n\t try {\n\t\t// Extract assistant reply text\n\t\tconst assistantReply = isOllama\n\t\t ? data?.message?.content\n\t\t : data?.choices?.[0]?.message?.content;\n\n\t\tconst intakePayload = {\n\t\t turns: [\n\t\t\t{ role: \"user\", content: lastUserMsg },\n\t\t\t{ role: \"assistant\", content: assistantReply || \"\" }\n\t\t ]\n\t\t};\n\n\t\tawait fetch(process.env.INTAKE_API_URL, {\n\t\t method: \"POST\",\n\t\t headers: { \"Content-Type\": \"application/json\" },\n\t\t body: JSON.stringify(intakePayload),\n\t\t});\n\n\t\tconsole.log(\"📨 Sent exchange to Intake summarizer\");\n\t } catch (err) {\n\t\tconsole.warn(\"⚠️ Intake post failed:\", err.message);\n\t }\n\t}\n\n\n if (isOllama) {\n res.json({\n id: \"ollama-\" + Date.now(),\n object: \"chat.completion\",\n created: Math.floor(Date.now() / 1000),\n model,\n choices: [\n {\n index: 0,\n message: data?.message || { role: \"assistant\", content: \"\" },\n finish_reason: \"stop\",\n },\n ],\n });\n } else {\n res.json(data);\n }\n\n } catch (err) {\n console.error(\"💥 relay error\", err);\n res.status(500).json({ error: \"relay_failed\", detail: err.message });\n }\n});\n\n/* ------------------------------\n Start server\n--------------------------------*/\napp.listen(PORT, () => {\n console.log(`Relay listening on port ${PORT}`);\n});\n\nHeres the whole thing i dunno where to look" }, { "role": "assistant", "content": "Perfect — this is a great base, and I can see exactly what’s happening. \nYour Relay → NeoMem calls are wired correctly, but the **issue** is simple: the identifier fields (`user_id`, `run_id`) are being sent, but NeoMem **only indexes one primary identifier at a time** — and Relay’s search adds an extra `run_id`, which filters the results to zero. \n\nHere’s the exact fix 👇 \n\n---\n\n### 🧠 What’s happening\n\n**Your current payloads:**\n\n#### `memAdd`\n```js\nconst payload = {\n messages: [{ role: \"user\", content }],\n user_id: userId, // ✅ \"brian\"\n run_id: sessionId, // ⚠️ \"Test1\"\n metadata: { source: \"relay\", cortex: cortexData },\n};\n```\n\n#### `memSearch`\n```js\nconst payload = {\n query,\n user_id: userId, // ✅ \"brian\"\n run_id: sessionId, // ⚠️ \"Test1\"\n};\n```\n\n→ When you call `/search`, NeoMem applies **both filters** (`user_id=brian` AND `run_id=Test1`). \nBut your earlier memories were stored with *only one of those keys actually populated internally*, so the strict match returns nothing (`Total existing memories: 0`). \n\n---\n\n### ✅ The fix\n\nUse **only one identifier** for both adding and searching — simplest is `user_id`. \nComment out or remove the `run_id` line in both helper functions:\n\n#### 🩹 Edit 1 — `memAdd`\n```js\nconst payload = {\n messages: [{ role: \"user\", content }],\n user_id: userId,\n // run_id: sessionId, ← remove or comment out\n metadata: { source: \"relay\", cortex: cortexData },\n};\n```\n\n#### 🩹 Edit 2 — `memSearch`\n```js\nconst payload = {\n query,\n user_id: userId,\n // run_id: sessionId, ← remove or comment out\n};\n```\n\nThen rebuild:\n```bash\ndocker compose up -d --build relay\n```\n\n---\n\n### 🧾 Test flow\n\n1. Open your Lyra UI and send: \n > “Testing NeoMem again after fix”\n\n2. Watch NeoMem logs: \n ```\n POST /memories -> 200\n ```\n\n3. Send a second message: \n > “What did I just say about testing?”\n\n Now NeoMem logs should show:\n ```\n POST /search -> 200\n Found 1 result(s)\n ```\n\n4. You’ll see the retrieved memory injected under `Relevant memories:` 🎯\n\n---\n\nThis keeps Relay’s context loop stable, since all sessions (for now) share the same `user_id=brian`. \nOnce we add multi-user sessions later, we can bring `run_id` back with proper per-session recall logic.\n\nWant me to show the one-liner diff block (so you can patch both helpers fast)?" }, { "role": "user", "content": "Should we just get rid of session ID? i thought it could be useful to make searching quicker?" }, { "role": "assistant", "content": "That’s a great question — and you’re absolutely right to think about **session_id** as a potentially useful performance + organization key. \n\nHere’s the quick reality check on how it plays with NeoMem 👇 \n\n---\n\n### 🧩 What `sessionId` (or `run_id`) *can* be good for\n- **Scoping searches** → e.g., “only look at context from this current conversation.”\n- **Bulk cleanup** → you can `DELETE /memories?run_id=XYZ` to clear all context from one session.\n- **Debugging / audit** → helps you trace what came from what chat.\n\nSo yes — it’s conceptually useful.\n\n---\n\n### 🧠 Why it broke your current search\nRight now, NeoMem treats `user_id`, `run_id`, and `agent_id` as **filters combined with AND**, not as alternate keys. \nSo if you send both `user_id=brian` and `run_id=Test1`, it only returns results that match *both*. \nSince early writes may not have had both fields, you get zero hits.\n\n---\n\n### ✅ Two clean options going forward\n\n#### **Option A (Simple & Safe — for now)**\nDrop `run_id` from both `add` and `search`. \n→ Everything works immediately. \n→ Search still fast because it’s vector-indexed (pgvector handles scale).\n\n```js\n// use only user_id\nconst payload = { query, user_id: userId };\n```\n\nLater we can add `run_id`-scoped searches intentionally, like:\n```js\nmem.search({ query, run_id: activeSession })\n```\n\n#### **Option B (Scoped sessions — future enhancement)**\nKeep writing both:\n```js\n{ user_id: \"brian\", run_id: \"Test1\" }\n```\n…but make Relay’s `search()` choose one:\n- “brian” for global memory recall \n- “Test1” for ephemeral session recall \n\nThat’d look like:\n```js\nawait memSearch(lastUserMsg, userId, cortexEnabled ? sessionId : null)\n```\nand then NeoMem can decide `if run_id is None → skip filter`.\n\nWe can implement that logic later in NeoMem’s `/search` endpoint with a simple:\n```python\nif not run_id:\n # don’t include run_id filter\n```\n\n---\n\nFor now, I’d recommend **Option A** — just comment it out and get everything stable. \nOnce you’ve got consistent saves + recalls, we can reintroduce session scoping as a layer-two optimization. \n\nWant me to show exactly how that optional “skip run_id if null” tweak would look inside NeoMem’s `search_memories` endpoint when you’re ready to re-enable it?" }, { "role": "user", "content": "yeah lets just comment it out or get rid of it for now" }, { "role": "assistant", "content": "Perfect — that’s the clean, stable call for now 👍 \n\nHere’s the exact **minimal patch** to make Relay’s memory loop fully consistent with NeoMem and stop filtering issues.\n\n---\n\n### 🩹 Edit these two helper functions in `server.js`\n\n#### **1️⃣ memAdd()**\n```js\nasync function memAdd(content, userId, sessionId, cortexData) {\n const url = `${NEOMEM_API}/memories`;\n const payload = {\n messages: [{ role: \"user\", content }],\n user_id: userId,\n // run_id: sessionId, ← remove for now\n metadata: { source: \"relay\", cortex: cortexData },\n };\n return fetchJSON(url, {\n method: \"POST\",\n headers: {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${MEM0_API_KEY}`,\n },\n body: JSON.stringify(payload),\n });\n}\n```\n\n#### **2️⃣ memSearch()**\n```js\nasync function memSearch(query, userId, sessionId) {\n const url = `${NEOMEM_API}/search`;\n const payload = {\n query,\n user_id: userId,\n // run_id: sessionId, ← remove for now\n };\n return fetchJSON(url, {\n method: \"POST\",\n headers: {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${MEM0_API_KEY}`,\n },\n body: JSON.stringify(payload),\n });\n}\n```\n\n---\n\n### 🧱 Then rebuild and restart:\n```bash\ndocker compose up -d --build relay\n```\n\n---\n\n### 🧪 Test\n1. Send a message: “testing neomem again” \n2. Then send another: “what did I just say?” \n3. Watch logs:\n - `mem.add took ... ms`\n - `mem.search took ... ms`\n - Should now show: \n ```\n 📚 Mem0 hits: 1\n 1) testing neomem again (score 0.93)\n ```\n\n---\n\nOnce confirmed, we can later reintroduce session scoping (Option B) safely inside NeoMem’s API logic, so it doesn’t block global recall. \n\nWould you like me to prep a tiny changelog entry for this (so we record “Removed run_id scoping to fix empty search results”)?" }, { "role": "user", "content": "okay it looks like it is working now. I guess now the big question is, should relay send directly to neomem? or should intake summarize then send the memories to neomem? or both?" }, { "role": "assistant", "content": "Excellent — glad to hear the memory loop’s working cleanly now ✅ \n\nYou’ve hit one of the most important architecture questions in Lyra’s “brain flow,” and there’s not just one right answer — it depends on how you want **short-term vs long-term** memory to behave. \nLet’s break it down simply: \n\n---\n\n### 🧠 Option A — **Relay → NeoMem directly** *(what you’re doing now)* \n**Flow:** \nUser → Relay → NeoMem \n\n**Pros:** \n- Fast and simple (one hop). \n- You capture every exchange raw — nothing ever lost. \n- NeoMem can later be refined or rewritten asynchronously. \n\n**Cons:** \n- Lots of noisy or redundant memories. \n- Search space grows faster (more vectors, more duplicates). \n- Cortex/Intake summarization doesn’t shape what gets stored — everything goes in. \n\n**Best for:** testing, low-traffic personal deployments, or when you want a “black-box recorder.”\n\n---\n\n### 🔁 Option B — **Relay → Intake → NeoMem (summarized path)** \n**Flow:** \nUser → Relay → Intake (summarize) → NeoMem \n\n**Pros:** \n- Intake condenses chat turns into concise summaries before long-term storage. \n- NeoMem stays smaller and higher-signal. \n- Easier to train later (summaries already structured). \n\n**Cons:** \n- You lose the exact original phrasing unless you store both raw + summary. \n- Slight delay or dependency on Intake’s availability. \n\n**Best for:** production memory loops, or when you want high-quality, curated memories. \n\n---\n\n### ⚙️ Option C — **Hybrid (best of both)** \n**Flow:** \nUser → Relay \n→ (1) store raw immediately in NeoMem \n→ (2) forward same exchange to Intake \n→ Intake periodically posts refined summaries back to NeoMem (“rewrite/update”) \n\nThat mirrors how the human brain consolidates: *hippocampus (raw events)* → *neocortex (refined memory)*. \nYou already have the plumbing for this — Relay is forwarding to Intake after each turn (`📨 Sent exchange to Intake summarizer`), so Intake could just post its summaries back via `/memories` or `/update`.\n\n---\n\n### 💡 Recommended next step\nKeep **Option A + C hybrid** for now: \n- Relay keeps writing raw messages (guarantees nothing lost). \n- Intake starts writing summarized versions back later, using either a “summary” metadata tag or a rewrite call. \n\nOnce we’re confident Intake is stable, we can flip to pure summarized-first (Option B) if it proves cleaner.\n\n---\n\nIf you’d like, I can show a short diagram + example Intake route (`POST /summarize → POST /memories`) so you can see exactly how that hybrid flow would look in code. \nWant that next?" }, { "role": "user", "content": "so if it matters, neomem does its own sort of filtering and duplication checking logic and reasoning, which is why it does so many request to an AI API" }, { "role": "assistant", "content": "Ah — that’s *hugely* relevant 👏 \n\nThat means NeoMem isn’t just a dumb vector store — it’s already doing **semantic reasoning, deduplication, and selective retention** on incoming memories. \nIn other words, it already behaves a lot like an *executive hippocampus* — deciding *what’s worth keeping* and *how to store it*. \n\nThat changes the calculus quite a bit: \n\n---\n\n### 🧠 With NeoMem’s internal reasoning layer in play:\n\n#### ✅ Relay → NeoMem directly \n...is actually **the correct primary path.**\n\nBecause: \n- NeoMem already analyzes, filters, and merges related content on insert. \n- Duplicates or low-value entries are auto-ignored. \n- NeoMem’s own reasoning cycle (those API calls to OpenAI/Ollama) essentially *is* the “summarization” layer. \n\nSo you don’t need Intake summarizing first — that would just summarize, then NeoMem would summarize *again* (double compression, lost nuance). \n\n---\n\n### 🔁 Role for Intake in this new setup\nWith NeoMem reasoning on ingest, **Intake** should switch focus from *summarizing for storage* → *summarizing for context continuity.*\n\nThink of it like this:\n\n| Layer | Function |\n|-------|-----------|\n| **Relay → NeoMem** | Commit “episodic memories” (raw but filtered) |\n| **Intake** | Maintain **short-term summaries** for current chat (for context window injection) |\n| **NeoMem** | Handle **long-term semantic storage**, deduplication, and reflection |\n\nSo instead of sending summaries *to* NeoMem, Intake’s job becomes keeping Relay aware of what’s happening *this session* (a “working memory” loop).\n\n---\n\n### ⚙️ Hybrid evolution (down the road)\nEventually, you can still let Intake do **periodic reflective updates**, e.g.:\n\n> Every 50 exchanges → summarize session → send one “summary memory” to NeoMem with metadata `{type: \"summary\"}` \n\nThat gives NeoMem an abstract overview without replacing its per-message recall logic.\n\n---\n\n### 💡 TL;DR Recommendation\nKeep:\n```\nRelay → NeoMem ✅ (primary)\nRelay → Intake ✅ (for short-term summaries only)\n```\nand skip Intake → NeoMem for now, since NeoMem’s reasoning makes that redundant.\n\n---\n\nWould you like me to sketch a quick diagram (or pseudo-flow) showing this refined “Lyra memory triage” — short-term, long-term, and reasoning layers — so we can lock that architecture in visually?" }, { "role": "user", "content": "I like the hybrid evolution idea. " }, { "role": "assistant", "content": "Perfect — that’s the sweet spot. 🧠 \n\nYou’re essentially building Lyra’s **dual-memory loop** — a structure very similar to how biological systems work (short-term consolidation → long-term abstraction → later reflection). \n\nHere’s the clean mental model for your hybrid evolution 👇 \n\n---\n\n## 🌿 Lyra Memory Architecture v1.5 — “Hybrid Consolidation Loop”\n\n### 🧩 1. **Immediate Path (Fast + Raw)**\n**Relay → NeoMem**\n\n- Every user ↔ assistant exchange is written straight to NeoMem. \n- NeoMem runs its *reasoning + deduplication + relevance scoring* at ingest. \n- Output: a detailed, timestamped record of every conversation turn. \n- Equivalent to: **hippocampus recording sensory input.**\n\n```plaintext\nUser → Relay → NeoMem (/memories)\n ↳ AI filter, merge, store\n```\n\n---\n\n### ⚙️ 2. **Working Memory Path (Short-Term Awareness)**\n**Relay → Intake**\n\n- Relay sends the same exchanges to Intake. \n- Intake doesn’t store permanently — it maintains rolling summaries (like “last 10 turns”). \n- Output: a short contextual digest Relay can re-inject into prompts. \n- Equivalent to: **prefrontal cortex short-term working memory.**\n\n```plaintext\nUser → Relay → Intake → back to Relay\n```\n\n---\n\n### 🧬 3. **Consolidation Path (Reflective Summarization)**\n**Intake → NeoMem (periodic summaries)**\n\n- Every N exchanges or on “quiet periods,” Intake generates session summaries. \n- Posts them back to NeoMem via `/memories` with special metadata, e.g.:\n ```json\n {\n \"messages\": [{\"role\": \"assistant\", \"content\": \"Session summary...\"}],\n \"user_id\": \"brian\",\n \"metadata\": { \"type\": \"summary\", \"source\": \"intake\" }\n }\n ```\n- NeoMem stores these as high-level reflections alongside raw entries. \n- Equivalent to: **sleep consolidation / reflection.**\n\n```plaintext\nIntake → NeoMem (summary insertion)\n```\n\n---\n\n### 🌗 Resulting Behavior\n- **Fast learning** from NeoMem’s reasoning on raw messages. \n- **Context continuity** from Intake’s rolling summaries. \n- **Scalable retention** from periodic high-level consolidation. \n- **No duplication**, since NeoMem auto-filters and merges. \n\n---\n\n### 🔮 Future Enhancement Ideas\n- Add a `/reflect` route in NeoMem → triggers its own “dream cycle” (re-summarizes clusters). \n- Use metadata flags (`type: \"raw\"`, `type: \"summary\"`, `type: \"reflection\"`) for easy filtering. \n- Add confidence scoring to prioritize memory recall. \n- Optionally allow Cortex to “query NeoMem” during reasoning cycles.\n\n---\n\nWould you like me to diagram that flow visually next (boxes/arrows style, easy to drop into your README)?" }, { "role": "user", "content": "ok so i think we have neomem working properly now. I guess we should get back to working on relay and improving it" }, { "role": "assistant", "content": "Perfect — NeoMem is solid, so now we can safely shift gears to Relay again. ⚙️ \n\nBefore we dive back in, let’s just align on **what Relay’s role is right now vs where we’re taking it**, so we pick the right next improvements.\n\n---\n\n### 🧩 **Current Relay (v0.3.1 baseline)**\n**Purpose:** Message router and orchestrator. \n**Flow:**\n```\nUI ↔ Relay ↔ LLMs (OpenAI/Ollama)\n ↳ NeoMem (memory add/search)\n ↳ Intake (summary)\n```\n\n✅ Working features:\n- OpenAI & Ollama backend switching \n- Memory add/search loop (NeoMem) \n- Basic Cortex annotation (optional) \n- Persona sidecar (currently commented out) \n- Intake forwarder for summarization \n- Debug logging & injected prompt preview \n\n---\n\n### 🚀 **Next Upgrade Phases**\n\n**Phase 1 — Stability & UX**\n- [ ] Clean up environment variable handling (clear error messages if any service missing) \n- [ ] Add proper healthcheck routes for each submodule (NeoMem, Intake, Cortex, Persona) \n- [ ] Add structured logs (`INFO`, `WARN`, `ERROR` with timestamps) \n- [ ] Improve response structure to clients (standard JSON schema) \n\n**Phase 2 — Smart Routing**\n- [ ] Make Relay dynamically choose which LLM to use (OpenAI vs Ollama vs Cortex) \n- [ ] Add configurable routing rules in `.env` or `relay.config.json` \n - Example: `SALIENCE_MODEL=qwen2` → small model for classification \n - Example: `REASONING_MODEL=ollama:mythomax` → heavy model for reasoning \n\n**Phase 3 — Personality & Context**\n- [ ] Re-enable Persona Sidecar with fallback logic (default persona if sidecar unreachable) \n- [ ] Inject Intake’s rolling summary into the prompt dynamically \n- [ ] Add “session recall” — load relevant NeoMem memories + recent Intake summary per chat \n\n**Phase 4 — Observability / Control**\n- [ ] Add `/metrics` endpoint for live span times (LLM latency, mem.add/search times, etc.) \n- [ ] Add optional web dashboard (small UI card showing which modules are connected & healthy)\n\n---\n\nTo move smoothly: \nwould you like to start with **Phase 1 (stability & logging cleanup)** first — or jump right into **Phase 3 (personality/context injection)** where things get more interesting?" } ] }