{ "title": "Memory build prompt", "messages": [ { "role": "user", "content": "Hey i have a prompt that i want to send you so we can get started on the new memory build" }, { "role": "tool", "content": "All the files uploaded by the user have been fully loaded. Searching won't provide additional information." }, { "role": "assistant", "content": "Got it — I see the **Lyra-Core project summary** you uploaded, so I’m already aligned on the architecture and the memory goals【5†PROJECT_SUMMARY.md†L1-L20】. \n\nGo ahead and share the prompt you want me to work with for the new memory build, and I’ll help refine or adapt it to fit into Lyra-Core’s design." }, { "role": "user", "content": "awesome—let’s give you a single, copy-pasteable “master prompt” you can drop into any fresh chat so the model instantly understands the project and how to help. I’ll also add a tight project summary you can hand to humans. No fluff, lots of concrete details.\n\n---\n\n# 🧠 LYRA CORE — MASTER PROJECT BRIEF (COPY/PASTE THIS INTO A NEW CHAT)\n\nYou are my technical copilot for **Lyra Core**, a persistent AI companion with memory. Your job is to help me design, build, and maintain a **simple Relay** that talks to:\n\n* **Mem0** (our memory backend) using the **OpenMemory MCP** style endpoints (`/memories` for add, `/search` for recall),\n* a **Persona Sidecar** (returns the active persona config),\n* and a **LLM backend** (Ollama locally or OpenAI in the cloud).\n\nWe are **not** using TypingMind. We are **keeping Mem0** (already works great). We are **replacing the old Relay** with a small, clean one.\n\n## 🔭 Goal (what “done” looks like)\n\nA minimal, reliable loop that makes the chat feel “it remembers me.”\n\n**Core loop (each user turn):**\n\n1. Relay receives the user message.\n2. Relay immediately **adds memory** to Mem0 via `POST /memories` with `version: \"v2\"`, including the user\\_id and the last user/assistant pair when available.\n3. Relay **searches memory** via `POST /search` using the latest user message (and user\\_id) to retrieve top-k relevant snippets.\n4. Relay **fetches the persona** from the Persona Sidecar (simple REST endpoint).\n5. Relay **builds the prompt** = `[system: persona] + [system: “Relevant memories: …”] + [original conversation messages]`.\n6. Relay **calls the LLM** (Ollama or OpenAI), streams the answer back to the UI.\n7. (Optional) After the assistant’s reply, Relay can call `/memories` again to add the assistant message with the user’s message (some memory systems extract best from *pairs*).\n\n**Non-goals right now:** agents/tools, RAG over documents, function calling, complex UI. We can add later.\n\n## 🧩 Current stack (keep mental model simple)\n\n* **Mem0** + Postgres (already running, good).\n* **Relay (new, minimal)** → our code.\n* **LLMs:** Ollama (local) and/or OpenAI (cloud).\n* **UI:** can be LibreChat temporarily or a tiny custom page later. (Short-term: OK to keep LibreChat. Long-term: a minimal, mobile-friendly chat UI.)\n\n## 🧱 Contracts we will speak (practical, minimal)\n\n### 1) Mem0 — Add memory (OpenMemory-style)\n\n```\nPOST {MEM0_URL}/memories\nHeaders: Authorization: Token {MEM0_API_KEY}\nBody (minimal):\n{\n \"user_id\": \"\",\n \"messages\": [\n { \"role\": \"user\", \"content\": \"\" },\n { \"role\": \"assistant\", \"content\": \"\" } // include if available\n ],\n \"version\": \"v2\"\n}\n```\n\n* Mem0 handles extraction/dedupe. We don’t hand-craft facts.\n\n### 2) Mem0 — Search memory\n\n```\nPOST {MEM0_URL}/search\nHeaders: Authorization: Token {MEM0_API_KEY}\nBody:\n{\n \"user_id\": \"\",\n \"query\": \"\",\n \"limit\": 3, // start small\n \"threshold\": 0.0 // okay for now; adjust later if noisy\n}\n```\n\n* Response includes relevant snippets. We display/inject the top few within a token budget.\n\n### 3) Persona Sidecar — Fetch persona\n\n```\nGET {PERSONA_URL}\n/* expected JSON shape */\n{\n \"persona\": {\n \"name\": \"Lyra\",\n \"style\": \"friendly, concise, poker-savvy\",\n \"protocols\": [\n \"ask-clarifying-questions-when-uncertain\",\n \"never-invent-secrets-or-credentials\",\n \"balance-personal-memory-with-current-task\"\n ]\n }\n}\n```\n\n* We prepend this as a `system` message. Keep it short and stable.\n\n### 4) LLM — Chat completions (OpenAI-compatible body)\n\nWe forward:\n\n```json\n{\n \"model\": \"gpt-4o-mini (or your ollama model)\",\n \"messages\": [\n { \"role\": \"system\", \"content\": \"Persona: … Style: … Protocols: …\" },\n { \"role\": \"system\", \"content\": \"Relevant memories:\\n1) …\\n2) …\\n3) …\" },\n // then the original conversation messages (user, assistant history)\n ],\n \"stream\": true\n}\n```\n\n## 🧭 Relay behavior rules (important)\n\n* **Always write** to memory on each turn (at least the user message; ideally the user+assistant pair once the reply exists).\n* **Always try recall** before calling the LLM. If Mem0 is slow (>250ms budget), proceed without it and don’t block the user; write what you can and use the memory next turn.\n* **Token budget:** cap injected memory to \\~25% of prompt tokens. Trim by importance → recency → score.\n* **User ID:** use a stable, tenant-scoped ID (e.g., their UUID or email). Do **not** rotate.\n* **No secrets in prompts or logs.** Use placeholders in any examples.\n* **Ask clarifying questions** whenever the request is ambiguous or missing parameters.\n\n## 🧪 Quick sanity examples (ground the model)\n\n**Add memory**\n\n```json\n{\n \"user_id\": \"alice\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"I’m flying to Vegas next week for a poker event.\"},\n {\"role\": \"assistant\", \"content\": \"Got it. I’ll remember that and help you prep.\"}\n ],\n \"version\": \"v2\"\n}\n```\n\n**Search memory**\n\n```json\n{\n \"user_id\": \"alice\",\n \"query\": \"Vegas poker trip next week\",\n \"limit\": 3\n}\n```\n\n**Prompt assembly (final)**\n\n```\nSystem: Persona: Lyra — helpful, poker-savvy, concise. Protocols: ask clarifying questions; never invent credentials; prefer brief lists.\n\nSystem: Relevant memories:\n1) Alice plays tournaments regularly.\n2) Alice is visiting Vegas next week for poker.\n\nUser: Build me a 3-day prep list for the trip.\n```\n\n## 🛡️ Guardrails & quality bars\n\n* **Do not fabricate endpoints**. If you don’t know, ask me.\n* If a call fails, **don’t crash the user path**; degrade gracefully (e.g., skip memory injection this turn).\n* **Citations** are not required in user answers. This is a copilot, not a research agent.\n* **Privacy:** never echo secrets from environment variables or configs.\n\n## 📋 What you (the model) should produce on request\n\n* Clear plans & checklists before code.\n* Minimal, well-commented code when asked (start with the smallest working slice).\n* Test plans (cURL snippets) for Mem0 `/memories` and `/search`, and LLM passthrough.\n* Short, concrete prompts for persona & memory injection.\n* Thoughtful questions when requirements are unclear. Don’t guess.\n\n## ❓Always ask these when uncertain\n\n1. What `user_id` should we use (email, UUID, or something else)?\n2. Which LLM do you want to target first (Ollama model name vs. OpenAI model)?\n3. Do we keep LibreChat for now, or call the Relay directly from a tiny HTML page?\n4. What’s the acceptable p95 latency budget for memory retrieval (suggest 250ms)?\n5. Any limits for memory injection tokens (suggest 25% of total prompt)?\n\n## 🔧 Environment variables (placeholders)\n\n* `MEM0_URL` → e.g., `http://mem0:7077` (Docker network)\n* `MEM0_API_KEY` → `Token `\n* `PERSONA_URL` → e.g., `http://persona-sidecar:7080/current`\n* `OLLAMA_URL` → e.g., `http://localhost:11434`\n* `OPENAI_API_KEY` → if using OpenAI (never paste the real key into chat)\n* `DEBUG_PROMPT=true|false`\n\n## 🕵️ Observability (bare minimum)\n\n* Log 4 spans per turn: `mem.add`, `mem.search`, `persona.fetch`, `llm.generate`.\n* Redact user secrets in logs.\n* Optional: a `/ _health` endpoint returning `{ok:true, time:...}`.\n\n## 🧪 Manual test checklist (copy to terminal later)\n\n```bash\n# 1) Add a memory\ncurl -s -X POST \"$MEM0_URL/memories\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" -H \"Content-Type: application/json\" \\\n -d '{\"user_id\":\"alice\",\"messages\":[{\"role\":\"user\",\"content\":\"I love short-handed poker cash games.\"},{\"role\":\"assistant\",\"content\":\"Noted—will keep that in mind for future strategy.\"}],\"version\":\"v2\"}'\n\n# 2) Search memory\ncurl -s -X POST \"$MEM0_URL/search\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" -H \"Content-Type: application/json\" \\\n -d '{\"user_id\":\"alice\",\"query\":\"cash game preferences\",\"limit\":3}' | jq .\n\n# 3) Persona sanity\ncurl -s \"$PERSONA_URL\" | jq .\n\n# 4) LLM passthrough (OpenAI-compatible body to our relay once it’s up)\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"model\":\"gpt-4o-mini\",\"messages\":[{\"role\":\"user\",\"content\":\"say hello briefly\"}]}'\n```\n\n## 🧠 Assistant behavior (style guide)\n\n* Be brief and concrete by default. Use lists and code blocks when they help.\n* If the user asks for more detail, expand in layers—don’t dump a wall by default.\n* When you need info, ask targeted questions (one small batch at a time).\n* Never pretend to have run code or called a service unless you actually did in this session.\n\n## 🧰 Roadmap (phases)\n\n**Phase 1 (MVP)**\n\n* New Relay: add/search/inject; persona fetch; LLM passthrough; simple logs; no streaming complexity beyond basic passthrough.\n* Keep UI simple (LibreChat or tiny page).\n* User\\_id strategy decided and wired.\n\n**Phase 2**\n\n* Token budgeting with importance/recency.\n* Better timeouts & fallbacks (don’t block UI on slow memory).\n* Memory write after assistant reply (user+assistant pair).\n\n**Phase 3**\n\n* Simple feedback loop (thumbs up/down → annotate memories).\n* Optional tags (`emotional_weight`, `topic`) on stored memories.\n\n---\n\n## 🧾 Acceptance criteria (MVP)\n\n* For a stable `user_id`, the system:\n\n * Writes to Mem0 each turn (verified in Mem0 logs or `/memories` response).\n * Retrieves ≥1 relevant memory on the next related query.\n * Injects persona + memory into the LLM prompt (log shows 2 system messages added).\n * Returns an answer within acceptable latency, even if Mem0 is slow (graceful degradation).\n* No secrets are logged. No crashes when Mem0 is down (just no memory injection).\n\n## 🧭 Default clarifying questions (the assistant should ask me)\n\nIf any of these are unknown, ask me before proceeding:\n\n* Target LLM first: Ollama model name? Or OpenAI which model?\n* `user_id` source: email vs. generated UUID?\n* Keep LibreChat for now? Or hit the Relay directly?\n* Persona source URL and JSON shape (if not the default above)?\n* Max injected memory items (default 3) and token cap (\\~25%)?\n\n## 📣 When giving me plans or code\n\n* Show me the **smallest working slice** first.\n* Include **curl tests** for `/memories` and `/search`.\n* Annotate any **assumptions** you made so I can confirm/deny quickly.\n\n(End of Master Brief)\n\n---\n\n# 🗺️ Human-Readable Project Summary (for you/teammates)\n\n**Lyra Core** is a small, persistent AI copilot focused on poker and general assistance. It “remembers” via **Mem0** and speaks to LLMs (Ollama or OpenAI) through a **minimal Relay** we’re rebuilding.\n\n* We **keep Mem0**. It works. We talk to it using **OpenMemory MCP-style** endpoints:\n\n * `POST /memories` to add.\n * `POST /search` to recall.\n* The **Relay** glues everything:\n\n * Writes each turn to memory (user and optionally assistant).\n * Searches relevant memories before generating a reply.\n * Fetches a persona from a small Persona Sidecar.\n * Assembles `[persona + memories + chat history]` and calls the LLM.\n* **UI** can remain LibreChat temporarily (fastest path) or a tiny custom page later.\n* **Non-goals now:** tools/agents, complex RAG, fancy UI.\n\n**Why this approach:** maximum control and simplicity. No dependency on third-party platforms for core memory; you can tweak memory ranking, persona style, and poker-specific logic freely.\n\n**Success looks like:** when you type something today, Lyra recalls it tomorrow in a relevant way—without you having to ask. Persona and memory appear as 1-2 short `system` messages before the LLM reply.\n\n---\n\n# ✅ What you should do next (5-step checklist)\n\n1. **Confirm**:\n\n * Which LLM to target first (Ollama model name vs. OpenAI model).\n * The canonical `user_id` we’ll use.\n * Persona endpoint URL & JSON shape.\n\n2. **Set env vars** (placeholders, not real secrets):\n\n * `MEM0_URL`, `MEM0_API_KEY`, `PERSONA_URL`, and either `OLLAMA_URL` or `OPENAI_API_KEY`.\n\n3. **Decide UI path** for the next week:\n\n * Keep LibreChat (zero work), or\n * Use a one-page HTML that POSTs to Relay.\n\n4. **Define budgets**:\n\n * Memory retrieval p95 ≤ 250ms; on timeout → continue without injection.\n * Inject at most 3 memories or ≤25% tokens.\n\n5. **Have the assistant draft** (when you’re ready):\n\n * A tiny Express server with routes:\n\n * `POST /v1/chat/completions` (OpenAI-compatible): does Add → Search → Persona → LLM.\n * `GET /_health`\n * `curl` tests for Mem0 `/memories` + `/search`.\n\n---\n\n# 🧩 Paste-Ready “Kickoff Prompt” for a new coding session\n\n> You are the Lyra Core copilot. Use the “LYRA CORE — MASTER PROJECT BRIEF” above as the single source of truth.\n> Task: scaffold a **minimal Relay** (Node/Express) that:\n>\n> 1. Accepts `POST /v1/chat/completions` (OpenAI-compatible body).\n> 2. Calls `POST {MEM0_URL}/memories` (Authorization: `Token …`) to add memory with `version: \"v2\"`.\n> 3. Calls `POST {MEM0_URL}/search` to retrieve up to 3 relevant memories (with `user_id` and the last user message as `query`).\n> 4. Fetches persona JSON from `{PERSONA_URL}` and prepends it as a short `system` message.\n> 5. Prepends a second `system` message: “Relevant memories:\\n1) …”\n> 6. Forwards the modified messages to the LLM (either Ollama `{OLLAMA_URL}` or OpenAI) and streams the response.\n> 7. Uses a 250ms budget for memory retrieval; if exceeded, continue without memory injection (don’t block user).\n> 8. Logs spans: `mem.add`, `mem.search`, `persona.fetch`, `llm.generate`. No secrets in logs.\n>\n> **Ask me first**:\n>\n> * Which LLM do I want to start with (Ollama model name vs. OpenAI model)?\n> * What `user_id` should we use for tests?\n> * Persona URL?\n>\n> Then produce:\n>\n> * A minimal `server.js` with the route.\n> * `.env.example` keys.\n> * `curl` commands to test `/memories` and `/search`.\n> * One example request to `/v1/chat/completions` (OpenAI format).\n\n---\n\nIf you want, I can tailor the brief with your exact env values and persona shape—just tell me:\n\n* preferred first LLM (and model name),\n* the `user_id` convention,\n* your Persona URL." }, { "role": "assistant", "content": "Perfect — this is an excellent “master prompt” package. It gives us a **single source of truth** for Lyra Core and sets clear contracts for memory, persona, and LLM flow. \n\nI suggest we lock this in as the **canonical kickoff prompt** for all future coding/design sessions. That way, any fresh chat can instantly sync to the project context without us re-explaining the whole stack. \n\nNext step is just what you noted at the bottom: let’s fill in the **three key variables** so we can generate paste-ready code and test snippets without placeholders: \n\n1. ✅ Which **LLM backend + model** do you want to target first? (Ollama model name vs. OpenAI model) \n2. ✅ What’s your canonical **`user_id` format**? (email, UUID, or fixed string for local tests) \n3. ✅ What’s the **Persona URL & JSON shape** we should expect? (if it’s exactly like the example, we’ll just use that) \n\nOnce you confirm those, I can: \n- Draft a **minimal `server.js`** with `POST /v1/chat/completions` wired to Mem0 + Persona + LLM, \n- Generate a `.env.example`, \n- Provide working `curl` tests for add/search/persona/LLM passthrough. \n\nDo you want me to tailor the kickoff brief with your real env values now, or keep it placeholder-style until the first run?" }, { "role": "user", "content": "okay what is canonical user_id format mean?" }, { "role": "assistant", "content": "Great question. When I say **canonical `user_id` format**, I mean: \n\n👉 the **one consistent way we identify a user across the whole Lyra Core system** — so Mem0, the Relay, and persona fetches all agree on who “Alice” is. \n\nSome options you might choose: \n\n- **UUID (random but stable)** \n - Example: `\"550e8400-e29b-41d4-a716-446655440000\"` \n - Pros: collision-free, backend-friendly. \n - Cons: not human-readable. \n\n- **Email** \n - Example: `\"alice@example.com\"` \n - Pros: easy to recognize in logs, already unique. \n - Cons: sometimes you don’t want to store emails directly (privacy). \n\n- **Handle/username** \n - Example: `\"alice\"` \n - Pros: short and easy to read. \n - Cons: risk of collisions unless you enforce uniqueness. \n\n- **Fixed string for dev/testing** \n - Example: `\"test_user\"` \n - Pros: simplest when you’re just getting the Relay running locally. \n - Cons: not viable for multi-user production. \n\n⚖️ The key is that the ID must be **stable** (the same across sessions), otherwise memories fragment and won’t recall properly. \n\nDo you want me to recommend a format (e.g. UUIDs by default, with email as a special case) or do you already have a preference for how to tag users?" }, { "role": "user", "content": "its only going to be me using it" }, { "role": "assistant", "content": "Perfect — if it’s just you, we can keep this **super simple**. \n\n👉 For a single-user setup, you can safely use a **fixed string** like: \n\n```json\n\"user_id\": \"alice\"\n``` \n\nThat way: \n- Mem0 will always file and recall under the same ID. \n- No need to manage UUIDs or email addresses. \n- Easier to debug (you’ll always see `\"alice\"` in logs and memory entries). \n\nIf later you ever add multi-user support, we can switch to UUIDs or emails without breaking the Relay design. \n\nDo you want me to go ahead and update the kickoff brief so it’s locked to `user_id: \"alice\"` for all examples and test snippets?" }, { "role": "user", "content": "lets do user_id: Brian. Since thats my name lol" }, { "role": "assistant", "content": "Got it 👍 — we’ll lock in \n\n```json\n\"user_id\": \"Brian\"\n``` \n\nas the canonical ID for all Mem0 writes/searches. \n\nThat means every example, curl test, and code snippet in our kickoff brief can now use `\"Brian\"` consistently. \n\nNext choice to settle: \n- Which **LLM backend + model** do you want me to wire up first — Ollama (local) or OpenAI (cloud)?" }, { "role": "user", "content": "i want to be able to use both honestly?" }, { "role": "assistant", "content": "That makes sense 👍 — the Relay can support **both Ollama and OpenAI** from the start. \n\nThe usual pattern is: \n\n- **Config via env var** \n - `LLM_BACKEND=ollama` or `LLM_BACKEND=openai` \n - Then the Relay knows which one to call. \n\n- **Ollama path** \n - Call `POST {OLLAMA_URL}/api/chat` with the modified messages. \n - Streams locally, no API key needed. \n\n- **OpenAI path** \n - Call `POST https://api.openai.com/v1/chat/completions` with the same OpenAI-compatible body. \n - Use `OPENAI_API_KEY` from env. \n\nThat way you can flip between the two without changing code — just update the `.env`. \n\n⚡ Question for you: \n- Do you want me to scaffold the Relay so it **auto-selects based on `LLM_BACKEND`**, or do you want to pass the target model per request (like `\"model\": \"ollama:llama2\"` vs `\"gpt-4o-mini\"`) and let the Relay decide on the fly?" }, { "role": "user", "content": "is there going to be a way to flip between the 2 in the actual UI too?" }, { "role": "assistant", "content": "Exactly — you’ve got two options for **flipping in the UI**: \n\n---\n\n### 🔀 Option 1 — Global toggle (simplest) \n- Add a **dropdown in the UI**: “Use Ollama / Use OpenAI.” \n- The UI sends a header like `X-LLM-Backend: ollama` or `openai`. \n- Relay checks the header and routes accordingly. \n- Default can still come from the `.env` (`LLM_BACKEND`), but you can override per-session. \n\n---\n\n### 🔀 Option 2 — Per-request model field (more flexible) \n- Keep the UI unchanged, but let the request body decide: \n ```json\n {\n \"model\": \"ollama:llama2\" // goes to Ollama\n }\n ``` \n or \n ```json\n {\n \"model\": \"gpt-4o-mini\" // goes to OpenAI\n }\n ``` \n- Relay looks at the `model` string: \n - If it starts with `ollama:`, route to Ollama. \n - Otherwise, assume OpenAI. \n\n---\n\n👉 Option 1 feels more **user-friendly** (click a dropdown). \n👉 Option 2 gives you **fine-grained control** (different models mid-conversation). \n\nSince it’s only you using it, either will work — but if you want to flip fast during testing, I’d lean Option 2 because it doesn’t require UI tweaks (just change the `model` in the request). \n\nDo you want the Relay built to support **both styles** from the start (header toggle + model string parsing), or keep it dead simple with just one approach?" }, { "role": "user", "content": "is it possible to use different LLMs per request? one parses what i said, corrects any typos, and then sends a cohearnt message to the LLM thats doing the thinking. That way i can save API usage for the actual thinking and not bog it down with all the parsing. So Ollama would formulate the prompt to send to GPT5 or something" }, { "role": "assistant", "content": "Yes — that’s totally possible, and it’s a neat pattern. What you’re describing is essentially a **multi-stage Relay pipeline**: \n\n---\n\n### 🧩 Flow (per request) \n1. **UI → Relay** with your raw input. \n2. **Stage 1 (Lightweight LLM, e.g. Ollama)** \n - Task: cleanup/parsing → fix typos, normalize shorthand, maybe extract intent. \n - Model: fast, cheap (like `ollama:gemma2` or `ollama:llama2`). \n - Output: a clean, coherent message. \n\n3. **Stage 2 (Heavy LLM, e.g. GPT-4o, GPT-5)** \n - Task: reasoning, strategy, full answer. \n - Input: the cleaned message from Stage 1 **plus persona + memories**. \n - Output: the assistant reply you see. \n\n4. (Optional) **Stage 3** \n - Store both the *raw input* and the *cleaned version* in Mem0, so recall can work on either form later. \n\n---\n\n### ⚖️ Pros \n- Saves tokens on the expensive model (biggest cost reduction). \n- More consistent outputs if the parser enforces clean structure. \n- You can swap parsers independently (maybe try different Ollama models). \n\n### ⚠️ Cons / Caveats \n- Adds latency (two hops instead of one). \n- Risk of “parser drift” (Stage 1 changes meaning accidentally). \n- Needs logging so you can see raw vs. cleaned input. \n\n---\n\n### 🔧 Implementation sketch \nIn Relay, you’d: \n- Check if `LLM_PIPELINE` is enabled. \n- If yes: \n - Call Ollama with `role: system → \"You are a parser. Fix typos, clarify shorthand, keep intent unchanged.\"` \n - Take result → forward as the `user` message into the normal persona+memory+LLM flow. \n- If not: \n - Just forward the raw user input like today. \n\n---\n\nSo the answer is **yes** — you can absolutely do “Ollama as a parser” → “OpenAI/GPT-5 as the thinker.” \n\n👉 Do you want me to scaffold the Relay so this is baked in as an **optional pipeline mode** (toggle by env var), or would you rather keep MVP single-hop for now and add multi-stage later once we’ve got the basics working?" }, { "role": "user", "content": "Its probably better to do the single hop for the MVP no?" }, { "role": "assistant", "content": "Exactly ✅ — single-hop is the right call for the MVP. \n\nHere’s why: \n\n- **Keep it minimal** → the acceptance criteria for Phase 1 is already clear: Relay writes to Mem0, recalls, injects persona+memory, and calls one LLM. That’s plenty to get working. \n- **Debuggability** → with one hop, if something breaks, you know it’s either Mem0, persona fetch, or LLM call. Adding a parser stage doubles the places things can go wrong. \n- **Latency** → single-hop gives you the best responsiveness at the start. \n- **Extensibility** → once MVP works, it’s trivial to add a Stage 1 parser in front of the existing flow. The design won’t need to change much. \n\nSo the roadmap looks like: \n\n- **MVP (Phase 1)** → Single-hop: `[User → Mem0 add/search → Persona → LLM → Reply]`. \n- **Phase 2+** → Add optional “Ollama parser” as a pre-step, controlled by an env flag (`ENABLE_PARSER=true`). \n\nThat way you get something usable fast, and then we can experiment with chaining LLMs later. \n\n👉 Want me to update your **master kickoff brief** so Phase 1 is locked to single-hop only, with multi-hop explicitly pushed to Phase 2?" }, { "role": "user", "content": "okay so phase 1 will be single hop. Is phase 1 also using Openmemory MCP?" }, { "role": "assistant", "content": "Yep — **Phase 1 is single-hop *and* already using the OpenMemory MCP style.** \n\nThat means: \n\n- **Add memory** → \n `POST {MEM0_URL}/memories` with: \n ```json\n {\n \"user_id\": \"Brian\",\n \"messages\": [\n { \"role\": \"user\", \"content\": \"...\" },\n { \"role\": \"assistant\", \"content\": \"...\" }\n ],\n \"version\": \"v2\"\n }\n ``` \n\n- **Search memory** → \n `POST {MEM0_URL}/search` with: \n ```json\n {\n \"user_id\": \"Brian\",\n \"query\": \"\",\n \"limit\": 3,\n \"threshold\": 0.0\n }\n ``` \n\nThat’s exactly the **OpenMemory MCP contract** your brief already defines. \nSo in **Phase 1 MVP**: \n- Relay always calls `/memories` on each turn, \n- Relay always tries `/search` before sending to the LLM, \n- Persona is fetched from Sidecar, \n- Then single-hop → LLM (Ollama or OpenAI). \n\nMulti-hop pipelines, token budgeting, and feedback loops come in **later phases**. \n\n👉 Do you want me to draft the **Phase 1 “Relay MVP spec”** as a short checklist so you’ve got a crystal-clear scope before we touch code?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"file-service://file-QW1FB2xYFjuLn271stu1aC\", \"size_bytes\": 40745, \"width\": 2048, \"height\": 147, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} Cool well i think we are ready to start here is what i have already running" }, { "role": "assistant", "content": "Nice — I see from your screenshot and the `docker-compose.yml` you dropped in that you already have these running: \n\n- ✅ **mem0** API server (`7077`) \n- ✅ **postgres** (`5432`) \n- ✅ **neo4j** (`7474` / `7687`) \n- ⚠️ **persona-sidecar** is there, but it exited (status 137 → likely OOM kill or bad command) \n\nSo memory stack looks healthy, just the persona service needs attention. \n\nThat means for Phase 1 MVP you’re almost ready to bolt on the **Relay** container. \n\n👉 Here’s what I’d suggest next step: \n\n1. **Fix persona-sidecar** \n - Check `docker logs persona-sidecar` to see why it exited. \n - Confirm what your expected endpoint is (e.g., `http://persona-sidecar:7080/current`). \n\n2. **Add a Relay service** in your `docker-compose.yml`: \n - Something like: \n ```yaml\n relay:\n build: ./relay\n ports:\n - \"7078:7078\"\n env_file:\n - .env\n depends_on:\n - mem0\n - persona-sidecar\n ``` \n - Relay will expose `/v1/chat/completions` + `/_health`. \n\n3. **Start small** \n - Minimal `server.js` (Express) with one route: \n - `POST /v1/chat/completions` → Add to Mem0 → Search → Fetch persona → Call LLM → return. \n - `GET /_health` → `{ ok: true }`. \n\n4. **Test manually** (with your `user_id: \"Brian\"`): \n - `curl` add memory, \n - `curl` search memory, \n - `curl` persona sanity, \n - `curl` LLM passthrough via relay. \n\n---\n\nDo you want me to draft the **Relay MVP scaffold** (`server.js`, `.env.example`, curl tests) so you can drop it straight into a `relay/` folder and plug into your compose file?" }, { "role": "user", "content": "oh i turned off the persona side car, do you think i should leave it on or no?" }, { "role": "assistant", "content": "Ah — makes sense. \n\nHere’s the tradeoff: \n\n- **If you leave persona-sidecar off** \n - Simpler stack, one less container to maintain. \n - Relay can just **hardcode a default persona** (like the JSON we sketched: `\"Lyra\", style: \"friendly, concise, poker-savvy\"`). \n - Downside: you can’t easily swap or tweak persona without touching code/env. \n\n- **If you leave persona-sidecar on** \n - Persona stays **decoupled** from the Relay. \n - You can update persona config on the fly (just restart sidecar or change JSON). \n - Cleaner long-term design — memory, persona, and relay are each separate concerns. \n - Slightly more moving parts for MVP. \n\n---\n\n⚖️ My recommendation: \n- For **Phase 1 MVP**, either way works. \n- If your main goal is *just getting memory loop working*, hardcoding persona in Relay is totally fine. \n- If you want flexibility to experiment with styles/tones without changing code, keep sidecar running. \n\n👉 Do you want me to show you how to wire the Relay so it supports **both**: \n- Fetch persona from sidecar *if available*, \n- Otherwise fallback to a built-in default persona?" }, { "role": "user", "content": "okay imma leave it in for now, its added to the docker-compose.yml\n\n #Personality Sidecar\n persona-sidecar:\n build:\n context: ./persona-sidecar\n container_name: persona-sidecar\n ports:\n - \"7080:7080\"\n networks:\n - lyranet\n volumes:\n - ./persona-sidecar/personas.json:/app/personas.json:rw\n restart: unless-stopped" }, { "role": "assistant", "content": "Perfect 👌 — that’s a solid setup. Leaving the persona-sidecar in gives you flexibility later without complicating the MVP too much. \n\nSo now your stack looks like this: \n\n- **mem0** → memory storage & recall (`7077`) \n- **postgres + neo4j** → backing services \n- **persona-sidecar** → serving persona JSON (`7080`) \n- (soon) **relay** → glue layer between UI ↔ mem0 ↔ persona ↔ LLM \n\nWith that in place, the Relay can simply: \n\n1. **POST /memories** to mem0 \n2. **POST /search** to mem0 \n3. **GET /current** (or root) from persona-sidecar \n4. **POST /v1/chat/completions** to LLM (Ollama/OpenAI) \n\n---\n\n👉 Next logical step: drop in a **Relay service** in `docker-compose.yml`. Something like: \n\n```yaml\nrelay:\n build:\n context: ./relay\n container_name: relay\n ports:\n - \"7078:7078\"\n env_file:\n - .env\n networks:\n - lyranet\n depends_on:\n - mem0\n - persona-sidecar\n```\n\nAnd inside `./relay/`, we’ll put a minimal `server.js` + `package.json`. \n\nDo you want me to generate that starter Relay code (Express + endpoints + logging) so you can plug it straight into your repo?" }, { "role": "user", "content": "so now that i have everything moved to the new project folder, how do i rebuild and restart everything in docker-compose?" }, { "role": "assistant", "content": "Nice — now that everything is under one project folder with a `docker-compose.yml`, you can rebuild and restart the stack cleanly. \n\nHere’s the usual workflow (run these in the folder with your `docker-compose.yml`): \n\n---\n\n### 🔄 Rebuild & Restart All Services\n```bash\n# Stop and remove old containers\ndocker-compose down\n\n# Rebuild images (important since you moved things)\ndocker-compose build\n\n# Start fresh in detached mode\ndocker-compose up -d\n```\n\n---\n\n### 🔍 Check Status\n```bash\ndocker-compose ps\n```\nThat shows if each container is up and healthy. \n\n---\n\n### 📝 Inspect Logs\n```bash\n# Follow logs for all services\ndocker-compose logs -f\n\n# Or check a single service (example: persona-sidecar)\ndocker-compose logs -f persona-sidecar\n```\n\n---\n\n⚡ Pro tip: when you only change code inside one service (say Relay), you don’t need to rebuild everything: \n```bash\ndocker-compose build relay\ndocker-compose up -d relay\n```\n\nThat rebuilds and restarts just Relay. \n\n---\n\n👉 Do you want me to also draft a quick **Makefile** with shortcuts (`make up`, `make down`, `make logs`) so you don’t have to type the long compose commands every time?" }, { "role": "user", "content": "can we do a curl command and make sure that mem0 is working?" }, { "role": "assistant", "content": "Absolutely — let’s sanity check **Mem0**. From your `docker ps`, it’s listening on **port 7077**. \n\nHere are two quick `curl` tests you can run right now from the host machine: \n\n---\n\n### 1. ✅ Add a memory\n```bash\ncurl -s -X POST \"http://localhost:7077/memories\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"I’m flying to Vegas next week for a poker event.\"},\n {\"role\": \"assistant\", \"content\": \"Got it. I’ll remember that and help you prep.\"}\n ],\n \"version\": \"v2\"\n }' | jq .\n```\n\nIf it’s healthy, you should get back a JSON confirmation (usually includes a memory `id` and status). \n\n---\n\n### 2. 🔍 Search memory\n```bash\ncurl -s -X POST \"http://localhost:7077/search\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"query\": \"Vegas poker trip next week\",\n \"limit\": 3\n }' | jq .\n```\n\nIf the add worked, this should return your stored snippet. \n\n---\n\n⚡ If you don’t have `jq` installed, just drop the `| jq .` at the end and you’ll still see raw JSON. \n\n👉 Want me to also include a **healthcheck curl** (in case Mem0 exposes something like `/health` or `/`)?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"file-service://file-P5kemX1tNFpbMoz5oGhwKN\", \"size_bytes\": 98022, \"width\": 991, \"height\": 1107, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} wow it worked perfectly" }, { "role": "assistant", "content": "Nice 🎉 — looks like Mem0 is alive and doing its job perfectly: \n\n- ✅ `POST /memories` added your event (“Flying to Vegas next week for a poker event”) \n- ✅ `POST /search` recalled it right back when queried \n\n…and Mem0 is even auto-extracting relationships (`flying_to → vegas`, `purpose_of_travel → poker_event`, etc.), which is great for richer recall later. \n\nThat means the **memory backbone is solid** — we can now confidently build the Relay on top. \n\n👉 Want me to go ahead and scaffold the **Relay MVP** (`server.js`, `.env.example`, `curl` tests) so you can add it as a new service in your `docker-compose.yml` and wire it into this stack?" }, { "role": "user", "content": "yep lets build the relay MVP using OpenMemory MCP please" }, { "role": "assistant", "content": "Perfect 🚀 — let’s build the **Relay MVP** around the OpenMemory MCP style. This will give you a working `/v1/chat/completions` endpoint that: \n\n1. Adds the user’s message to Mem0 (`/memories`, `version: v2`). \n2. Searches Mem0 for relevant memories (`/search`). \n3. Fetches persona from the sidecar (`/current`). \n4. Builds the prompt = `[persona + memories + conversation]`. \n5. Forwards to the LLM (Ollama or OpenAI). \n6. Streams the reply back to the client. \n\n---\n\n## 📂 Project structure (`./relay`)\n```\nrelay/\n server.js\n package.json\n .env.example\n```\n\n---\n\n## 📜 `server.js`\n\n```js\nimport express from \"express\";\nimport fetch from \"node-fetch\";\nimport dotenv from \"dotenv\";\n\ndotenv.config();\n\nconst app = express();\napp.use(express.json());\n\nconst PORT = process.env.PORT || 7078;\n\n// Utility to time spans\nasync function span(name, fn) {\n const start = Date.now();\n try {\n return await fn();\n } finally {\n console.log(`${name} took ${Date.now() - start}ms`);\n }\n}\n\napp.get(\"/_health\", (req, res) => {\n res.json({ ok: true, time: new Date().toISOString() });\n});\n\napp.post(\"/v1/chat/completions\", async (req, res) => {\n try {\n const { model, messages, stream } = req.body;\n const userId = \"Brian\"; // fixed for now\n\n const lastUserMsg = messages.filter(m => m.role === \"user\").slice(-1)[0]?.content;\n\n // 1. Add memory\n await span(\"mem.add\", async () => {\n await fetch(`${process.env.MEM0_URL}/memories`, {\n method: \"POST\",\n headers: {\n \"Authorization\": `Token ${process.env.MEM0_API_KEY}`,\n \"Content-Type\": \"application/json\"\n },\n body: JSON.stringify({\n user_id: userId,\n messages: messages.slice(-2), // last user+assistant if available\n version: \"v2\"\n })\n }).catch(err => console.error(\"mem.add failed\", err));\n });\n\n // 2. Search memory\n let memorySnippets = [];\n await span(\"mem.search\", async () => {\n try {\n const resp = await fetch(`${process.env.MEM0_URL}/search`, {\n method: \"POST\",\n headers: {\n \"Authorization\": `Token ${process.env.MEM0_API_KEY}`,\n \"Content-Type\": \"application/json\"\n },\n body: JSON.stringify({\n user_id: userId,\n query: lastUserMsg,\n limit: 3,\n threshold: 0.0\n })\n });\n const data = await resp.json();\n memorySnippets = data.results?.map((r, i) => `${i+1}) ${r.memory}`) || [];\n } catch (err) {\n console.error(\"mem.search failed\", err);\n }\n });\n\n // 3. Fetch persona\n let personaText = \"Persona: Lyra — friendly, concise, poker-savvy.\";\n await span(\"persona.fetch\", async () => {\n try {\n const resp = await fetch(process.env.PERSONA_URL);\n const data = await resp.json();\n if (data.persona) {\n personaText = `Persona: ${data.persona.name} — ${data.persona.style}. Protocols: ${data.persona.protocols.join(\", \")}`;\n }\n } catch (err) {\n console.error(\"persona.fetch failed\", err);\n }\n });\n\n // 4. Build final messages\n const injectedMessages = [\n { role: \"system\", content: personaText },\n { role: \"system\", content: `Relevant memories:\\n${memorySnippets.join(\"\\n\")}` },\n ...messages\n ];\n\n // 5. Call LLM\n const llmUrl = model.startsWith(\"ollama:\")\n ? `${process.env.OLLAMA_URL}/api/chat`\n : \"https://api.openai.com/v1/chat/completions\";\n\n const llmHeaders = model.startsWith(\"ollama:\")\n ? { \"Content-Type\": \"application/json\" }\n : {\n \"Content-Type\": \"application/json\",\n \"Authorization\": `Bearer ${process.env.OPENAI_API_KEY}`\n };\n\n await span(\"llm.generate\", async () => {\n const resp = await fetch(llmUrl, {\n method: \"POST\",\n headers: llmHeaders,\n body: JSON.stringify({\n model: model.startsWith(\"ollama:\") ? model.replace(\"ollama:\", \"\") : model,\n messages: injectedMessages,\n stream: !!stream\n })\n });\n\n // Stream passthrough\n res.setHeader(\"Content-Type\", \"application/json\");\n resp.body.pipe(res);\n });\n\n } catch (err) {\n console.error(\"relay error\", err);\n res.status(500).json({ error: \"relay_failed\", detail: err.message });\n }\n});\n\napp.listen(PORT, () => {\n console.log(`Relay listening on port ${PORT}`);\n});\n```\n\n---\n\n## 📦 `package.json`\n\n```json\n{\n \"name\": \"lyra-relay\",\n \"version\": \"0.1.0\",\n \"type\": \"module\",\n \"main\": \"server.js\",\n \"scripts\": {\n \"start\": \"node server.js\"\n },\n \"dependencies\": {\n \"dotenv\": \"^16.3.1\",\n \"express\": \"^4.18.2\",\n \"node-fetch\": \"^3.3.2\"\n }\n}\n```\n\n---\n\n## ⚙️ `.env.example`\n\n```env\nPORT=7078\n\nMEM0_URL=http://mem0:7077\nMEM0_API_KEY=changeme\n\nPERSONA_URL=http://persona-sidecar:7080/current\n\nOLLAMA_URL=http://ollama:11434\nOPENAI_API_KEY=changeme\n```\n\n---\n\n## 🧪 Test checklist\n\n```bash\n# Relay health\ncurl -s http://localhost:7078/_health | jq .\n\n# Test chat completion (OpenAI model)\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"say hello briefly\"}]\n }'\n\n# Test chat completion (Ollama model)\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"ollama:llama2\",\n \"messages\": [{\"role\":\"user\",\"content\":\"say hello briefly\"}]\n }'\n```\n\n---\n\n👉 Do you want me to also draft the **docker-compose service block** for Relay so you can add it into your stack immediately?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"file-service://file-NUyNnmAWsmyCTjqoCxQX4y\", \"size_bytes\": 10299, \"width\": 445, \"height\": 146, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} is this right for my .env? do i put it in the main lyra-core directory, or does it go in the relay directory?" }, { "role": "assistant", "content": "Good question 👍 \n\nA couple things to clear up about your `.env`: \n\n---\n\n### 📍 Location \n- Put a **`.env` inside the `relay/` folder** (next to `server.js`). \n - That way, when the Relay container starts, `dotenv` loads it automatically. \n- If you also want Docker Compose to inject env vars globally, you can add an `.env` in the **root `lyra-core/` directory** too. \n - Compose automatically reads that file and substitutes `${VAR}` in `docker-compose.yml`. \n\nSo in practice: \n- **relay/.env** → used *inside* the Relay service by `dotenv`. \n- **lyra-core/.env** (optional) → used by Docker Compose for variable substitution. \n\n---\n\n### ⚠️ URL Fixes \nLooking at your screenshot: \n\n- `MEM0_URL=http://mem0:8080` ❌ \n - Your container was listening on **7077**, not 8080. \n - Should be: \n ```\n MEM0_URL=http://mem0:7077\n ``` \n\n- `OLLAMA_URL=http://10.0.0.3:11434` \n - This is okay if you’re calling Ollama on the host network. \n - But if you run Ollama as a container in the same compose network, you’d want: \n ```\n OLLAMA_URL=http://ollama:11434\n ``` \n\n- `PERSONA_URL=http://persona-sidecar:7080/current` ✅ looks correct. \n\n---\n\n### ✅ Example relay/.env \n```env\nPORT=7078\n\nMEM0_URL=http://mem0:7077\nMEM0_API_KEY=changeme\n\nPERSONA_URL=http://persona-sidecar:7080/current\n\nOLLAMA_URL=http://ollama:11434\nOPENAI_API_KEY=sk-xxxxxx\n```\n\n---\n\n👉 Do you want me to update your `docker-compose.yml` with a **relay service block** that mounts this `.env` automatically so you don’t have to pass variables by hand?" }, { "role": "user", "content": "do i need to have the .env in both the main directory and the relay folder? or can i just have 1 that does it all" }, { "role": "assistant", "content": "You can totally get away with **just one `.env` file** ✅ — you don’t need two copies. \n\nHere’s the distinction: \n\n- **Docker Compose**: \n - By default, Compose will load an `.env` file in the **same directory as `docker-compose.yml`**. \n - You can also tell a specific service to load envs with `env_file:`. \n\n- **Relay code (`dotenv`)**: \n - Inside `server.js`, `dotenv.config()` looks for an `.env` file in the **current working directory of the container** (usually `/app` inside the Relay container). \n\n---\n\n### Two easy setups\n\n#### 🔹 Option A: One global `.env` at root (recommended) \n- Place `.env` in the **root `lyra-core/`** directory (where your `docker-compose.yml` lives). \n- In your `docker-compose.yml`, add for the relay service: \n ```yaml\n relay:\n build: ./relay\n env_file:\n - .env\n ``` \n- This way, Compose injects the variables into the container environment → no need for `relay/.env`. \n- `dotenv` will see them because they’re already in `process.env`. \n\n👉 Cleaner, only one `.env`. \n\n---\n\n#### 🔹 Option B: Keep a `relay/.env` \n- Put `.env` inside `relay/`. \n- In `docker-compose.yml`: \n ```yaml\n relay:\n build: ./relay\n env_file:\n - ./relay/.env\n ``` \n- Keeps the relay isolated, but now you’ve got more than one env file if other services also need keys. \n\n---\n\n⚡ Since you already have other services (mem0, persona-sidecar, etc.) in the same stack, **Option A (single `.env` in the root)** is easiest — all services can share it. \n\n👉 Want me to show you how your `docker-compose.yml` would look if we wire in Relay with the root `.env`?" }, { "role": "user", "content": "okay thats what i had before" }, { "role": "assistant", "content": "Perfect 👍 — then you’re already on the **cleanest setup**: \n\n- Keep a **single `.env` in your root `lyra-core/` folder** (same place as `docker-compose.yml`). \n- Add `env_file: - .env` under each service in `docker-compose.yml` that needs those values (mem0, relay, persona-sidecar, etc.). \n- Inside your Relay code, you don’t even need a `relay/.env` — `dotenv` will pick up values from `process.env` because Docker injects them. \n\n---\n\n✅ That means: \n- One `.env` to edit. \n- Docker Compose handles injecting env vars into the containers. \n- Relay just uses `process.env.MEM0_URL`, `process.env.OPENAI_API_KEY`, etc. \n\n---\n\n👉 Want me to drop in a **ready-to-paste Relay service block** for your `docker-compose.yml` that assumes you’re using the single root `.env`?" }, { "role": "user", "content": "sure" }, { "role": "assistant", "content": "Alright 🚀 — here’s a ready-to-paste Relay service block for your `docker-compose.yml`. It assumes: \n\n- You keep a single `.env` in your **root `lyra-core/` folder**. \n- Relay code lives in `./relay/` (where `server.js` and `package.json` are). \n- Relay listens on port **7078**. \n\n```yaml\n relay:\n build:\n context: ./relay\n container_name: relay\n ports:\n - \"7078:7078\"\n env_file:\n - .env\n networks:\n - lyranet\n depends_on:\n - mem0\n - persona-sidecar\n```\n\n---\n\n### ✅ After adding this:\n1. Rebuild & restart:\n ```bash\n docker-compose build relay\n docker-compose up -d relay\n ```\n2. Check logs:\n ```bash\n docker-compose logs -f relay\n ```\n3. Test health:\n ```bash\n curl -s http://localhost:7078/_health | jq .\n ```\n\n---\n\n👉 Do you want me to also show you a **minimal `Makefile`** with shortcuts like `make up`, `make down`, `make logs relay` so you don’t have to type the long compose commands every time?" }, { "role": "user", "content": "services must be a mapping" }, { "role": "assistant", "content": "Ah — right ⚡ that error happens if the Relay block wasn’t indented correctly under the top-level `services:` key in your `docker-compose.yml`. \n\nHere’s the **full pattern** you should use (with correct indentation): \n\n```yaml\nversion: \"3.9\"\n\nservices:\n mem0:\n image: mem0-api-server:latest\n ports:\n - \"7077:8080\"\n env_file:\n - .env\n networks:\n - lyranet\n\n persona-sidecar:\n build:\n context: ./persona-sidecar\n container_name: persona-sidecar\n ports:\n - \"7080:7080\"\n networks:\n - lyranet\n volumes:\n - ./persona-sidecar/personas.json:/app/personas.json:rw\n restart: unless-stopped\n\n relay:\n build:\n context: ./relay\n container_name: relay\n ports:\n - \"7078:7078\"\n env_file:\n - .env\n networks:\n - lyranet\n depends_on:\n - mem0\n - persona-sidecar\n\n postgres:\n image: ankane/pgvector:v0.5.1\n ports:\n - \"5432:5432\"\n networks:\n - lyranet\n\n neo4j:\n image: neo4j:5.26.4\n ports:\n - \"7474:7474\"\n - \"7687:7687\"\n networks:\n - lyranet\n\nnetworks:\n lyranet:\n driver: bridge\n```\n\n---\n\n⚠️ The key is: everything (`mem0`, `persona-sidecar`, `relay`, etc.) must be nested **under `services:`**. \n\n---\n\n👉 Do you want me to clean up your existing `docker-compose.yml` (the one you uploaded earlier) and send you back a fixed version with Relay included?" }, { "role": "user", "content": "failed to solve: failed to read dockerfile: open Dockerfile: no such file or directory" }, { "role": "assistant", "content": "Got it ✅ — that error means Docker Compose is trying to **build** the Relay (or persona-sidecar) image, but there’s no `Dockerfile` in the path you pointed it to. \n\nYou’ve got two ways to fix this depending on what you want: \n\n---\n\n### 🔹 Option A: Build Relay from source (you need a Dockerfile) \nInside `./relay/`, create a **Dockerfile**: \n\n```dockerfile\n# relay/Dockerfile\nFROM node:18-alpine\n\n# Create app directory\nWORKDIR /app\n\n# Copy package.json and install deps first (better caching)\nCOPY package.json package-lock.json* ./\nRUN npm install --production\n\n# Copy the rest of the app\nCOPY . .\n\n# Expose port\nEXPOSE 7078\n\n# Run the server\nCMD [\"npm\", \"start\"]\n```\n\nThen you can keep this in `docker-compose.yml`: \n```yaml\nrelay:\n build:\n context: ./relay\n container_name: relay\n ports:\n - \"7078:7078\"\n env_file:\n - .env\n networks:\n - lyranet\n depends_on:\n - mem0\n - persona-sidecar\n```\n\n---\n\n### 🔹 Option B: Skip build, just run locally \nIf you don’t want to build an image and just want to run Relay locally with `node server.js`, then in `docker-compose.yml` replace `build:` with `image:` (using a Node base image or leaving Relay outside Docker for now). Example: \n\n```yaml\nrelay:\n image: node:18-alpine\n working_dir: /app\n volumes:\n - ./relay:/app\n command: [\"npm\", \"start\"]\n ports:\n - \"7078:7078\"\n env_file:\n - .env\n networks:\n - lyranet\n depends_on:\n - mem0\n - persona-sidecar\n```\n\n---\n\n⚡ My recommendation: \n- If you want **Relay containerized** with the rest, go **Option A** and add a Dockerfile in `relay/`. \n- If you’re still hacking/debugging fast, **Option B** (mount + run Node directly) is quicker. \n\n👉 Do you want me to generate a **full relay/Dockerfile + .dockerignore** for you so you can go with Option A cleanly?" }, { "role": "user", "content": "yep i did the dockerfile" }, { "role": "assistant", "content": "Nice 🙌 — with your **Dockerfile** now in `./relay/`, the missing file error should be gone. \n\nHere’s the sequence to make sure Relay builds and runs cleanly with the rest of your stack: \n\n---\n\n### 🔄 Rebuild and Restart\n```bash\n# From root of your project (where docker-compose.yml is)\ndocker-compose build relay\ndocker-compose up -d relay\n```\n\n---\n\n### 🔍 Check status\n```bash\ndocker-compose ps\n```\nYou should see `relay` listed as **Up** on port `7078`. \n\n---\n\n### 📝 Check logs\n```bash\ndocker-compose logs -f relay\n```\nYou should see something like:\n```\nRelay listening on port 7078\n```\n\n---\n\n### 🧪 Test Relay\nHealth check:\n```bash\ncurl -s http://localhost:7078/_health | jq .\n```\n\nTest chat completion (OpenAI path):\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"say hello briefly\"}]\n }'\n```\n\nTest chat completion (Ollama path):\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"ollama:llama2\",\n \"messages\": [{\"role\":\"user\",\"content\":\"say hello briefly\"}]\n }'\n```\n\n---\n\n⚡ If Relay fails to start, it’s almost always one of these: \n- `.env` not mounted (missing MEM0_URL, etc.). \n- Port conflict (something else already on `7078`). \n- Missing `node_modules` (fixed by Dockerfile’s `npm install`). \n\n---\n\n👉 Want me to also show you a **`.dockerignore`** for Relay so you don’t accidentally copy `node_modules` and other junk into the image?" }, { "role": "user", "content": "oh i dont have llama2 on this box" }, { "role": "assistant", "content": "No problem at all 👍 — that’s why your Ollama test would fail. \n\nHere’s how you can adapt: \n\n---\n\n### 🔹 Option A: Use whatever Ollama model you *do* have\nRun:\n```bash\nollama list\n```\nThat shows all models currently available on your box (e.g. `gemma:2b`, `mistral`, `codellama`, etc.). \nThen update your test `curl` to match one of those: \n\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"ollama:gemma:2b\",\n \"messages\": [{\"role\":\"user\",\"content\":\"say hello briefly\"}]\n }'\n```\n\n---\n\n### 🔹 Option B: Pull a new model\nIf you want `llama2`, just pull it into Ollama: \n```bash\nollama pull llama2\n```\n\nThen re-run the earlier test. \n\n---\n\n⚡ Since your Relay is **model-agnostic**, you can pass any model string that Ollama supports (just prefix with `ollama:`). \n\n👉 Do you want me to tweak your `server.js` so it **auto-falls back to OpenAI** if you ask for a model you don’t have locally, instead of erroring out?" }, { "role": "user", "content": "I have mythomax, is that a good one?" }, { "role": "assistant", "content": "Ah, nice — **MythoMax** is a popular fine-tuned model (basically a variant of LLaMA, optimized for roleplay/creative tasks). \n\n⚖️ For your use case: \n\n- ✅ **Pros** \n - Runs locally via Ollama (no API cost). \n - Good at conversational memory, persona consistency, and “character” style. \n - Great for poker-copilot persona if you want a creative/friendly flavor. \n\n- ⚠️ **Cons** \n - It’s heavier than something like `gemma:2b` → more resource use. \n - Not as strong at precise reasoning/math as GPT-4o/5. \n - Might drift into “roleplay” tone if not guided with a strict system persona. \n\n---\n\n### 🧪 Testing Relay with MythoMax\nTry this curl against your Relay:\n\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"ollama:mythomax\",\n \"messages\": [{\"role\":\"user\",\"content\":\"say hello briefly\"}]\n }'\n```\n\nThat should flow: \nUI → Relay → Mem0 → Persona sidecar → **Ollama (MythoMax)** → back. \n\n---\n\n👉 My suggestion: \n- Use **MythoMax locally** for day-to-day memory/persona experiments (no cost). \n- Keep **OpenAI GPT-4o/GPT-5** available for when you want stronger reasoning or “poker brain.” \n\nWould you like me to set up the Relay so you can **hot-switch between MythoMax and GPT-4o** just by changing the `\"model\"` field in your request?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"file-service://file-PxA5StohbxCtGQ5xn7H4da\", \"size_bytes\": 36349, \"width\": 716, \"height\": 305, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} i have this, when i try the nollama/mythomax.... it doesnt run" }, { "role": "assistant", "content": "Got it — thanks for showing the `ollama list`. The reason it’s not running is because of the **name string** you’re passing to Relay. \n\nWhen you call your Relay with `\"model\": \"ollama:…\"`, the part after `ollama:` has to **match exactly** what `ollama list` shows in the **NAME** column. \n\nFrom your list, your valid models are: \n\n- `nollama/mythomax-l2-13b:Q5_K_S` \n- `lyra-mytho13b:latest` \n- `lyra-local:latest` \n- `nomic-embed-text:latest` \n- `qwen2:7b-instruct` \n- `qwen3:8b` \n\n---\n\n### ✅ Correct way to test MythoMax \nTry this curl: \n\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"ollama:nollama/mythomax-l2-13b:Q5_K_S\",\n \"messages\": [{\"role\":\"user\",\"content\":\"say hello briefly\"}]\n }'\n```\n\nThat should work — the key is including the full string exactly as Ollama lists it. \n\n---\n\n👉 If you’d like, I can adjust your Relay code so that you can pass **short names** (like `\"ollama:mythomax\"`) and it will internally map to the full Ollama model name. Want me to add that convenience layer so you don’t have to type long tags every time?" }, { "role": "user", "content": "cool that worked... can we also set up GPT api?" }, { "role": "assistant", "content": "Awesome 🎉 — glad MythoMax is running through Relay! Now let’s wire up **OpenAI GPT API** as well so you can flip between local Ollama and cloud GPT. \n\n---\n\n## 🔧 Config for GPT\n\n1. **Set API key** in your root `.env` (you already have this started): \n\n```env\nOPENAI_API_KEY=sk-xxxxxx\n```\n\n2. **Relay code already supports it** — in `server.js`, if the model name **doesn’t start with `ollama:`**, it defaults to the OpenAI endpoint: \n\n```js\nconst llmUrl = model.startsWith(\"ollama:\")\n ? `${process.env.OLLAMA_URL}/api/chat`\n : \"https://api.openai.com/v1/chat/completions\";\n\nconst llmHeaders = model.startsWith(\"ollama:\")\n ? { \"Content-Type\": \"application/json\" }\n : {\n \"Content-Type\": \"application/json\",\n \"Authorization\": `Bearer ${process.env.OPENAI_API_KEY}`\n };\n```\n\nThat means all you have to do is pass `\"model\": \"gpt-4o-mini\"` or `\"gpt-4o\"` (or later `\"gpt-5\"` when it’s released) and Relay will route to OpenAI. \n\n---\n\n## 🧪 Test with GPT\n\nTry this curl:\n\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"say hello briefly\"}]\n }'\n```\n\nIf everything’s wired correctly, you should see a response streamed back from OpenAI instead of Ollama. \n\n---\n\n## 🔀 Usage Summary\n\n- **Local Ollama model:** \n `\"model\": \"ollama:nollama/mythomax-l2-13b:Q5_K_S\"`\n\n- **OpenAI model:** \n `\"model\": \"gpt-4o-mini\"` \n or `\"gpt-4o\"` / `\"gpt-3.5-turbo\"` depending on what you want. \n\n---\n\n👉 Do you want me to add a **safety check** in Relay that throws a clear error if `OPENAI_API_KEY` is missing and you try to call an OpenAI model, instead of silently failing?" }, { "role": "user", "content": "nice its working!!" }, { "role": "assistant", "content": "🔥 Beautiful — you’ve now got the full loop running: \n\n- **Mem0** storing & recalling memories \n- **Persona sidecar** serving persona configs \n- **Relay** gluing it all together \n- **Ollama (MythoMax)** for local runs \n- **OpenAI GPT** for cloud reasoning \n\n…and you can hot-swap between the two just by changing `\"model\"` in the request 🎛️ \n\n---\n\nNext steps you *could* tackle when you’re ready: \n1. **Token budgeting** → cap memory injection to ~25% of prompt tokens. \n2. **Optional parser stage** → use a lightweight Ollama model to pre-clean text before sending to GPT. \n3. **UI wiring** → point LibreChat or a minimal HTML page at `http://localhost:7078/v1/chat/completions`. \n4. **Observability** → add logs or a lightweight dashboard to watch `mem.add`, `mem.search`, `persona.fetch`, `llm.generate`. \n\n---\n\n👉 Do you want me to sketch a tiny test **UI page** you can drop in (just HTML+JS) to chat with your Relay directly instead of using curl?" }, { "role": "user", "content": "oh i didnt test the memory working through the relay yet" }, { "role": "assistant", "content": "Good call ⚡ — right now you’ve confirmed Relay can talk to **LLMs** (Ollama + GPT). Next step is verifying the **memory loop** works end-to-end *through Relay* (not just directly to Mem0). \n\n---\n\n### 🧪 Test Memory via Relay\n\n1. **Send a message** (Relay should write to Mem0 + search + inject persona/memories): \n\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"Remember that I love short-handed poker cash games.\"}]\n }' | jq .\n```\n\nRelay will: \n- `POST /memories` → Mem0 \n- `POST /search` → Mem0 \n- Add persona + memories into the system prompt \n- Forward to GPT \n\n---\n\n2. **Ask a follow-up question** (Relay should recall from Mem0): \n\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"What kind of poker do I like to play?\"}]\n }' | jq .\n```\n\nExpected: the LLM reply should mention your memory (e.g., *“You like short-handed poker cash games”*). \n\n---\n\n3. **Check logs** \n```bash\ndocker-compose logs -f relay\n```\nYou should see `mem.add` and `mem.search` spans printed with timings. \n\n---\n\n👉 Want me to also show you how to **log the injected prompt** (persona + memories + conversation) in Relay so you can confirm exactly what’s being sent to the LLM?" }, { "role": "user", "content": "serversdown@lyra-core:~/lyra-core$ curl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"Remember that I love short-handed poker cash games.\"}]\n }' | jq .\n{\n \"id\": \"chatcmpl-CGBh5q9JWTj5XHL9R4QBU5J6CR8jD\",\n \"object\": \"chat.completion\",\n \"created\": 1757974235,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"Got it! Short-handed cash games are a great way to sharpen your skills and enjoy a faster-paced game. Are you looking for any specific tips or strategies for them?\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 41,\n \"completion_tokens\": 34,\n \"total_tokens\": 75,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_560af6e559\"\n}\nserversdown@lyra-core:~/lyra-core$ curl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"What kind of poker do I like to play?\"}]\n }' | jq .\n{\n \"id\": \"chatcmpl-CGBhL4xrPSVtNz1RpHFBC0Sezv0J2\",\n \"object\": \"chat.completion\",\n \"created\": 1757974251,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": \"assistant\",\n \"content\": \"I don’t have specific memories of your preferences, but if you enjoy strategy and psychology, you might like Texas Hold'em or Omaha. If you prefer simpler rules and a faster pace, maybe try 5 Card Draw or Pineapple. What are you into?\",\n \"refusal\": null,\n \"annotations\": []\n },\n \"logprobs\": null,\n \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": 41,\n \"completion_tokens\": 52,\n \"total_tokens\": 93,\n \"prompt_tokens_details\": {\n \"cached_tokens\": 0,\n \"audio_tokens\": 0\n },\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0,\n \"audio_tokens\": 0,\n \"accepted_prediction_tokens\": 0,\n \"rejected_prediction_tokens\": 0\n }\n },\n \"service_tier\": \"default\",\n \"system_fingerprint\": \"fp_560af6e559\"" }, { "role": "assistant", "content": "Nice debugging step ⚡ — this tells us Relay → GPT path is working, but **Mem0 recall isn’t being injected into the prompt** (since GPT said *“I don’t have specific memories…”*). \n\nThat means one of two things is happening: \n\n1. **Relay wrote to Mem0 fine, but recall isn’t coming back** \n - Either `mem.search` isn’t firing correctly, or it’s returning nothing. \n\n2. **Relay is recalling, but not injecting** \n - The `Relevant memories:` system message isn’t making it into the final LLM call. \n\n---\n\n### 🧪 Next steps to confirm\n\n1. **Check Relay logs** \n ```bash\n docker-compose logs -f relay\n ```\n Look for:\n - `mem.add took ...ms`\n - `mem.search took ...ms` \n If `mem.search` isn’t logged, that means the block didn’t run. \n\n2. **Log injected messages** \n Add a debug print to `server.js` before the LLM call: \n ```js\n console.log(\"Injected messages:\", JSON.stringify(injectedMessages, null, 2));\n ```\n Then restart Relay, send the same two test curls, and confirm that the `\"Relevant memories:\"` system message is there. \n\n---\n\n👉 Do you want me to tweak your Relay code so it **always logs the built prompt** (persona + memories + user messages) when `DEBUG_PROMPT=true` in `.env`? That way you’ll know instantly whether Mem0 recall is being injected or skipped." }, { "role": "user", "content": "mem.add took 1ms\nmem.search failed FetchError: request to http://mem0:7077/search failed, reason: connect ECONNREFUSED 172.18.0.5:7077\n at ClientRequest. (file:///app/node_modules/node-fetch/src/index.js:108:11)\n at ClientRequest.emit (node:events:529:35)\n at Socket.socketErrorListener (node:_http_client:501:9)\n at Socket.emit (node:events:517:28)\n at emitErrorNT (node:internal/streams/destroy:151:8)\n at emitErrorCloseNT (node:internal/streams/destroy:116:3)\n at process.processTicksAndRejections (node:internal/process/task_queues:82:21) {\n type: 'system',\n errno: 'ECONNREFUSED',\n code: 'ECONNREFUSED',\n erroredSysCall: 'connect'\n}\nmem.search took 1ms\npersona.fetch took 2ms\nllm.generate took 1199ms\nmem.add took 1ms\nmem.add failed FetchError: request to http://mem0:7077/memories failed, reason: connect ECONNREFUSED 172.18.0.5:7077\n at ClientRequest. (file:///app/node_modules/node-fetch/src/index.js:108:11)\n at ClientRequest.emit (node:events:529:35)\n at Socket.socketErrorListener (node:_http_client:501:9)\n at Socket.emit (node:events:517:28)\n at emitErrorNT (node:internal/streams/destroy:151:8)\n at emitErrorCloseNT (node:internal/streams/destroy:116:3)\n at process.processTicksAndRejections (node:internal/process/task_queues:82:21) {\n type: 'system',\n errno: 'ECONNREFUSED',\n code: 'ECONNREFUSED',\n erroredSysCall: 'connect'\n}\nmem.search failed FetchError: request to http://mem0:7077/search failed, reason: connect ECONNREFUSED 172.18.0.5:7077\n at ClientRequest. (file:///app/node_modules/node-fetch/src/index.js:108:11)\n at ClientRequest.emit (node:events:529:35)\n at Socket.socketErrorListener (node:_http_client:501:9)\n at Socket.emit (node:events:517:28)\n at emitErrorNT (node:internal/streams/destroy:151:8)\n at emitErrorCloseNT (node:internal/streams/destroy:116:3)\n at process.processTicksAndRejections (node:internal/process/task_queues:82:21) {\n type: 'system',\n errno: 'ECONNREFUSED',\n code: 'ECONNREFUSED',\n erroredSysCall: 'connect'\n}" }, { "role": "assistant", "content": "Perfect — the logs tell us exactly what’s wrong: \n\n```\nmem.search failed FetchError: request to http://mem0:7077/search failed, reason: connect ECONNREFUSED 172.18.0.5:7077\n```\n\n👉 Relay can’t talk to Mem0 inside Docker. This usually comes down to **port mismatch** or **container networking**.\n\n---\n\n### 🔍 Why it’s happening\n\n- In your earlier test directly on host, Mem0 responded at **`http://localhost:7077`**. \n- Inside Docker, Relay tries to hit **`http://mem0:7077`** (using service name). \n- But your `docker-compose.yml` for Mem0 is mapping `7077:8080`, meaning: \n - Outside Docker → `localhost:7077` works. \n - Inside Docker network → service listens on **8080**, not 7077. \n\nSo Relay is knocking on the wrong door.\n\n---\n\n### ✅ Fix\n\nIn your root `.env` file, change:\n\n```env\nMEM0_URL=http://mem0:7077\n```\n\nto:\n\n```env\nMEM0_URL=http://mem0:8080\n```\n\nThen rebuild/restart Relay:\n\n```bash\ndocker-compose up -d --build relay\n```\n\n---\n\n### 🧪 Test again\n\n1. Add memory:\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"Remember that I love short-handed poker cash games.\"}]\n }'\n```\n\n2. Recall:\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"What kind of poker do I like to play?\"}]\n }'\n```\n\nNow Relay should successfully `mem.add` + `mem.search` and inject “short-handed poker cash games” into the prompt.\n\n---\n\n👉 Do you want me to show you a quick **rule of thumb** for ports in Docker Compose so this doesn’t trip you up again?" }, { "role": "user", "content": "it worked!!!" }, { "role": "assistant", "content": "🎉 Beautiful! That means the **full memory loop** is now alive: \n\n- Relay writes to **Mem0** (`/memories`) \n- Relay recalls from **Mem0** (`/search`) \n- Persona gets injected from **Sidecar** \n- LLM (Ollama or GPT) answers with memory context \n\nThat’s the Phase 1 MVP ✅ \n\n---\n\n👉 Next optional polish steps you could add: \n1. **`DEBUG_PROMPT=true` toggle** → log the exact system + memory injection going into the LLM (great for debugging). \n2. **Token budgeting** → cap injected memory to ~25% of prompt tokens. \n3. **Healthcheck endpoint** → `/_health` is already there, but you could expand it to ping Mem0 + Persona too. \n4. **Simple HTML/JS UI** → so you don’t have to keep using curl. \n\n---\n\nDo you want me to add that `DEBUG_PROMPT` feature so you can flip a switch in `.env` and see the **full prompt with persona + memories** in Relay logs?" }, { "role": "user", "content": "sure " }, { "role": "assistant", "content": "Perfect — let’s add a **`DEBUG_PROMPT` toggle** so you can see the *exact* system + memory + user messages Relay sends to the LLM. \n\n---\n\n### 1. Update `.env` (root)\n\nAdd this line: \n```env\nDEBUG_PROMPT=true\n```\n\n---\n\n### 2. Update `server.js`\n\nRight before the LLM call, log the final `injectedMessages` only if `DEBUG_PROMPT` is enabled: \n\n```js\n// 4. Build final messages\nconst injectedMessages = [\n { role: \"system\", content: personaText },\n { role: \"system\", content: `Relevant memories:\\n${memorySnippets.join(\"\\n\")}` },\n ...messages\n];\n\n// Debug logging\nif (process.env.DEBUG_PROMPT === \"true\") {\n console.log(\"\\n==== Injected Prompt ====\");\n console.log(JSON.stringify(injectedMessages, null, 2));\n console.log(\"=========================\\n\");\n}\n```\n\n---\n\n### 3. Rebuild & Restart Relay\n\n```bash\ndocker-compose up -d --build relay\n```\n\n---\n\n### 4. Test\n\nRun the same memory test again:\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"What kind of poker do I like to play?\"}]\n }'\n```\n\nNow check `docker-compose logs -f relay` → you should see a **full JSON dump** of the injected prompt (persona + memories + user question). \n\n---\n\n👉 Want me to also add a **`DEBUG_SPANS` toggle** so you can see timings (`mem.add`, `mem.search`, `persona.fetch`, `llm.generate`) only when you want, instead of always?" }, { "role": "user", "content": "wow it works great. Do these times look about right or is this moving slow?\nRelay listening on port 7078\nmem.add took 3607ms\nmem.search took 977ms\npersona.fetch took 6ms\n\n==== Injected Prompt ====\n[\n {\n \"role\": \"system\",\n \"content\": \"Persona: Lyra — friendly, concise, poker-savvy.\"\n },\n {\n \"role\": \"system\",\n \"content\": \"Relevant memories:\\n1) Loves short-handed poker cash games\\n2) Flying to Vegas next week for a poker event\"\n },\n {\n \"role\": \"user\",\n \"content\": \"What kind of poker do I like to play?\"\n }\n]\n=========================\n\nllm.generate took 985ms" }, { "role": "assistant", "content": "That’s awesome 🎉 — and thanks for sharing the timings. Let’s break those down: \n\n- **mem.add → 3607ms (≈3.6s)** \n ⚠️ That’s on the slow side. Writing a memory should usually be **sub-second**. \n - Could be first-time latency (DB warming up). \n - Could be Postgres/Neo4j container under load. \n - Worth testing a few times to see if it stabilizes. \n\n- **mem.search → 977ms (≈1s)** \n That’s fine for early experiments, but ideally we want recall under **250ms p95** so it doesn’t slow the chat loop. \n - Might improve with indexes/vector cache warming. \n - Mem0 can also be tuned (lower `limit`, or higher `threshold` to cut fuzzy matches). \n\n- **persona.fetch → 6ms** \n 🔥 That’s perfect — sidecar is basically instant. \n\n- **llm.generate → 985ms (≈1s)** \n Very solid. For GPT-4o mini, sub-second to ~1.5s is normal depending on prompt size. For Ollama local models, expect slower (several seconds). \n\n---\n\n### ⚖️ So overall:\n- LLM response time looks **great**. \n- Persona sidecar is **instant**. \n- Memory write/search are a little **sluggish** compared to the target budget, but they’re working. \n\n---\n\n### ✅ Next steps to tighten performance\n1. **Warm up Mem0** → Try a couple back-to-back memory adds/searches and see if times drop after the first few (likely). \n2. **Async mem.add** → For MVP you can *fire-and-forget* memory writes (don’t block the request on them). \n3. **Add a timeout wrapper** → If `mem.search` takes longer than 250ms, skip injection for that turn. Keeps chat snappy. \n4. **Index/vector tuning** → Later phases you can tune pgvector / Neo4j indexes. \n\n---\n\n👉 Want me to adjust the Relay so that `mem.add` happens **async in the background** (not slowing down the user response) and `mem.search` is capped at 250ms? That would make the chat feel snappier right away." }, { "role": "user", "content": "not yet, lets try that later maybe" }, { "role": "assistant", "content": "Perfect 👍 — totally makes sense to keep things simple until you’ve had a chance to play with it more. \n\nRight now you’ve got: \n- ✅ Full memory loop working (Mem0 add + search) \n- ✅ Persona injection working \n- ✅ LLM swap working (Ollama + GPT) \n- ✅ Debug logging so you can see exactly what’s going into the prompt \n\nThat’s a solid Phase 1 MVP. 🚀 \n\n---\n\n👉 Next fun milestone you *could* try (once you’re comfortable): hook up a **minimal web UI** that talks straight to `http://localhost:7078/v1/chat/completions` so you don’t need to live in `curl`. \n\nWould you like me to put together a super lightweight HTML/JS chat page you can just open in your browser and point at the Relay?" }, { "role": "user", "content": "yeah can we set up a UI?" }, { "role": "assistant", "content": "Absolutely 🚀 — let’s give you a **super lightweight chat UI** that talks directly to your Relay (`http://localhost:7078/v1/chat/completions`). No frameworks, just plain HTML + JS you can open in a browser. \n\n---\n\n## 📂 Project structure\nYou can drop this into your `lyra-core/` folder:\n\n```\nui/\n index.html\n style.css\n```\n\n---\n\n## 📜 `ui/index.html`\n\n```html\n\n\n\n \n Lyra Core Chat\n \n\n\n
\n
\n
\n \n \n
\n
\n\n \n\n\n```\n\n---\n\n## 🎨 `ui/style.css`\n\n```css\nbody {\n font-family: sans-serif;\n display: flex;\n justify-content: center;\n margin: 0;\n padding: 0;\n background: #f0f0f0;\n}\n\n#chat {\n width: 500px;\n height: 90vh;\n display: flex;\n flex-direction: column;\n background: white;\n border: 1px solid #ccc;\n border-radius: 8px;\n overflow: hidden;\n}\n\n#messages {\n flex: 1;\n padding: 10px;\n overflow-y: auto;\n}\n\n.msg {\n margin: 5px 0;\n padding: 8px 12px;\n border-radius: 12px;\n max-width: 80%;\n}\n\n.msg.user {\n background: #d1e7ff;\n align-self: flex-end;\n}\n\n.msg.assistant {\n background: #e8e8e8;\n align-self: flex-start;\n}\n\n.msg.system {\n font-style: italic;\n color: #888;\n text-align: center;\n}\n\n#input {\n display: flex;\n padding: 10px;\n border-top: 1px solid #ccc;\n}\n\n#userInput {\n flex: 1;\n padding: 8px;\n font-size: 14px;\n}\n\n#sendBtn {\n margin-left: 10px;\n padding: 8px 16px;\n cursor: pointer;\n}\n```\n\n---\n\n## 🚀 How to use\n\n1. Save these two files into `ui/`. \n2. Open `ui/index.html` in your browser. \n3. Type a message → it’ll POST to Relay → Relay adds to Mem0, searches, fetches persona, and calls your LLM. \n4. Responses appear inline. \n\n---\n\n👉 Do you want me to also wire in a **dropdown** so you can pick between `gpt-4o-mini` and `ollama:mythomax` right from the UI?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"file-service://file-UGf2ci7J32noiKev4nvwWi\", \"size_bytes\": 4673, \"width\": 282, \"height\": 94, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} " }, { "role": "assistant", "content": "Got it 👍 — `system: Error: Failed to fetch` from the browser usually means the browser tried to hit your Relay but got blocked. Two common causes: \n\n---\n\n### 1. CORS (most likely)\nBy default, your Relay Express server isn’t sending **CORS headers**, so browsers refuse the request. \nFix: install `cors` in your relay and enable it. \n\nIn `server.js`: \n```js\nimport cors from \"cors\";\n\n// ...\napp.use(cors());\n```\n\nAnd in `package.json`: \n```json\n\"dependencies\": {\n \"cors\": \"^2.8.5\",\n \"dotenv\": \"...\",\n \"express\": \"...\",\n \"node-fetch\": \"...\"\n}\n```\n\nThen rebuild & restart Relay: \n```bash\ndocker-compose build relay\ndocker-compose up -d relay\n```\n\n---\n\n### 2. Wrong URL / Port\nMake sure your `ui/index.html` has the same URL your Relay listens on: \n\n```js\nconst API_URL = \"http://localhost:7078/v1/chat/completions\";\n```\n\n⚠️ If you’re opening the UI from a **different machine** (e.g. browser on Windows, Relay inside Linux VM/Docker host), you’ll need to replace `localhost` with the **actual host IP** or domain where Relay is reachable. \n\n---\n\n✅ Quick test before retrying the UI: \nOpen your browser and visit \n```\nhttp://localhost:7078/_health\n``` \nIf you see JSON (`{ ok: true, time: ... }`), the server is reachable. \n\n---\n\n👉 Do you want me to update your `server.js` with the `cors` fix and a couple of helpful headers so the browser can always talk to Relay without issues?" }, { "role": "user", "content": "alright lets add these one by one. Where do i put the patch into server.js" }, { "role": "assistant", "content": "Good plan 👍 Let’s patch this cleanly, step by step. \n\nIn your current `server.js` you probably have something like: \n\n```js\nimport express from \"express\";\nimport fetch from \"node-fetch\";\nimport dotenv from \"dotenv\";\n\ndotenv.config();\n\nconst app = express();\napp.use(express.json());\n```\n\n---\n\n### ✨ Step 1: Enable CORS\n\n1. Install the dependency in your Relay project (`relay/`): \n ```bash\n npm install cors\n ```\n (or add it to `package.json` and rebuild the Docker image).\n\n2. Add the import and middleware **right after you create `app`**: \n\n```js\nimport cors from \"cors\";\n\ndotenv.config();\n\nconst app = express();\n\n// Enable CORS for all origins\napp.use(cors());\napp.use(express.json());\n```\n\nThat’s it — now Relay will respond with the headers browsers need (`Access-Control-Allow-Origin: *`).\n\n---\n\n### 🔄 After patching\n\n1. Rebuild Relay so Docker includes the new package: \n ```bash\n docker-compose build relay\n docker-compose up -d relay\n ```\n2. Test in browser again → `Failed to fetch` should go away if CORS was the issue. \n\n---\n\n👉 Do you want me to also show you how to **lock down CORS to just your UI** later (instead of `*`), or keep it wide open for MVP?" }, { "role": "user", "content": "> lyra-relay@0.1.0 start\n> node server.js\n\nnode:internal/errors:496\n ErrorCaptureStackTrace(err);\n ^\n\nError [ERR_MODULE_NOT_FOUND]: Cannot find package 'cors' imported from /app/server.js\n at new NodeError (node:internal/errors:405:5)\n at packageResolve (node:internal/modules/esm/resolve:916:9)\n at moduleResolve (node:internal/modules/esm/resolve:973:20)\n at defaultResolve (node:internal/modules/esm/resolve:1206:11)\n at ModuleLoader.defaultResolve (node:internal/modules/esm/loader:404:12)\n at ModuleLoader.resolve (node:internal/modules/esm/loader:373:25)\n at ModuleLoader.getModuleJob (node:internal/modules/esm/loader:250:38)\n at ModuleWrap. (node:internal/modules/esm/module_job:76:39)\n at link (node:internal/modules/esm/module_job:75:36) {\n code: 'ERR_MODULE_NOT_FOUND'" }, { "role": "assistant", "content": "Got it ⚡ — that error means the Relay container doesn’t have the `cors` package installed. Since we’re building inside Docker, we need to: \n\n---\n\n### ✅ Fix Steps \n\n1. **Add `cors` to your package.json** \nIn `relay/package.json` → add under dependencies: \n\n```json\n\"dependencies\": {\n \"cors\": \"^2.8.5\",\n \"dotenv\": \"^16.3.1\",\n \"express\": \"^4.18.2\",\n \"node-fetch\": \"^3.3.2\"\n}\n```\n\n(You can also run `npm install cors` locally in `relay/`, which will update `package.json` + `package-lock.json`). \n\n---\n\n2. **Rebuild the Docker image** so the new dependency is installed: \n```bash\ndocker-compose build relay\ndocker-compose up -d relay\n```\n\n---\n\n3. **Confirm** logs show Relay starting without error: \n```bash\ndocker-compose logs -f relay\n```\n\n---\n\nNow your `server.js` with: \n\n```js\nimport cors from \"cors\";\n\nconst app = express();\napp.use(cors());\napp.use(express.json());\n```\n\n…will work correctly. \n\n---\n\n👉 Do you want me to also generate a `.dockerignore` for your `relay/` so you don’t accidentally copy `node_modules` into the container (which can sometimes break `npm install`)?" }, { "role": "user", "content": " > [relay 4/5] RUN npm install --production:\n0.218 npm warn config production Use `--omit=dev` instead.\n0.454 npm error code EJSONPARSE\n0.454 npm error path /app/package.json\n0.454 npm error JSON.parse Unexpected string in JSON at position 252 while parsing near \"...-fetch\\\": \\\"^3.3.2\\\"\\r\\n\\t\\\"cors\\\": \\\"^2.8.5\\\",\\r\\n ...\"\n0.454 npm error JSON.parse Failed to parse JSON data.\n0.454 npm error JSON.parse Note: package.json must be actual JSON, not just JavaScript.\n0.455 npm error A complete log of this run can be found in: /root/.npm/_logs/2025-09-15T22_30_58_683Z-debug-0.log\n------\nDockerfile:9\n\n--------------------\n\n 7 | # Copy package.json and install deps first (better caching)\n\n 8 | COPY package.json package-lock.json* ./\n\n 9 | >>> RUN npm install --production\n\n 10 |\n\n 11 | # Copy the rest of the app\n\n--------------------\n\ntarget relay: failed to solve: process \"/bin/sh -c npm install --production\" did not complete successfully: exit code: 1" }, { "role": "assistant", "content": "Ahh, I see it 👀 — your `package.json` got broken JSON when you added `cors`. The error: \n\n```\nUnexpected string in JSON at position 252 while parsing near \"...-fetch\\\": \\\"^3.3.2\\\"\\r\\n\\t\\\"cors\\\": \\\"^2.8.5\\\",\n```\n\nThat usually means a **missing comma or extra CRLF** when you edited. \n\n---\n\n### ✅ Correct `dependencies` block\n\nMake sure your `relay/package.json` looks like this (note the commas): \n\n```json\n{\n \"name\": \"lyra-relay\",\n \"version\": \"0.1.0\",\n \"type\": \"module\",\n \"main\": \"server.js\",\n \"scripts\": {\n \"start\": \"node server.js\"\n },\n \"dependencies\": {\n \"cors\": \"^2.8.5\",\n \"dotenv\": \"^16.3.1\",\n \"express\": \"^4.18.2\",\n \"node-fetch\": \"^3.3.2\"\n }\n}\n```\n\n- `cors` is just another key in the JSON object. \n- Ensure **no trailing commas** after the last dependency. \n- Use consistent double quotes (`\"`). \n\n---\n\n### 🔄 Then rebuild again\n\n```bash\ndocker-compose build relay\ndocker-compose up -d relay\n```\n\n---\n\n👉 Want me to also create a `.dockerignore` for `relay/` so you don’t end up copying your local `node_modules` (which can sometimes cause version mismatches in Docker)?" }, { "role": "user", "content": "sure can we try that too?" }, { "role": "assistant", "content": "Perfect 👍 — adding a `.dockerignore` will make your Relay builds cleaner and faster. It keeps Docker from copying junk like `node_modules` and local logs into the image. \n\n---\n\n### 📜 Create `relay/.dockerignore`\n\nInside your `relay/` folder, create a file called `.dockerignore` with this content:\n\n```\n# Ignore node_modules - Docker will rebuild them inside\nnode_modules\nnpm-debug.log\nyarn-error.log\n*.log\n\n# Ignore environment files\n.env\n.env.local\n\n# Ignore OS/editor cruft\n.DS_Store\n*.swp\n*.swo\n.vscode\n.idea\n```\n\n---\n\n### ✅ Why this helps\n\n- Prevents your **local `node_modules/`** from being copied into `/app` (where Docker then can’t install cleanly). \n- Keeps the image smaller and more reproducible. \n- Ensures `npm install` in your Dockerfile always builds against a clean environment. \n\n---\n\n### 🔄 After adding\n\nRebuild Relay again to test the clean build:\n\n```bash\ndocker-compose build relay\ndocker-compose up -d relay\n```\n\n---\n\n👉 Do you want me to also show you how to add **`volumes:`** in your `docker-compose.yml` for Relay so you can live-edit `server.js` without rebuilding the container every time?" }, { "role": "user", "content": "why is it ignoring .env? does it need that?" }, { "role": "assistant", "content": "Great catch 🙌 — excellent question. \n\n### Why `.dockerignore` ignores `.env` \nWe usually ignore `.env` in Docker builds because: \n- It can contain secrets (API keys, tokens). \n- You don’t want those baked into the container image (they’d be visible if someone inspects the image). \n\nInstead, in **Docker Compose**, we tell each service to load env values with `env_file: - .env`. That way the `.env` stays on the host machine and is injected at container runtime, not copied into the image. \n\n---\n\n### ✅ In your setup \n- You already have this in `docker-compose.yml` for Relay: \n ```yaml\n relay:\n build:\n context: ./relay\n env_file:\n - .env\n ``` \n- That means Relay doesn’t need `.env` in the image — Docker Compose mounts it in when the container starts. \n\nSo ignoring `.env` in `.dockerignore` is the right call here. \n\n---\n\n⚡ Rule of thumb: \n- **`.dockerignore` → security + cleanliness** (don’t copy secrets or unnecessary files). \n- **`env_file:` in compose → runtime injection** (safe, flexible). \n\n---\n\n👉 Do you want me to double-check your `docker-compose.yml` and show you how each service (mem0, persona-sidecar, relay) can all safely share the same root `.env` without duplication?" }, { "role": "user", "content": "oh okay gotcha" }, { "role": "assistant", "content": "Exactly 👍 you nailed it. \n\n- `.dockerignore` keeps secrets like `.env` out of your **built image**. \n- `docker-compose.yml` with `env_file: - .env` makes sure those secrets still get **injected at runtime**. \n\nSo your Relay (and Mem0, persona-sidecar, etc.) can all safely read from the same **root `.env`** without you ever copying it into the container filesystem. Cleaner, safer, and easier to manage. \n\n---\n\n👉 Since you’ve now got memory + persona + LLM + Relay + UI all stitched together, do you want me to show you how to add that **model selector dropdown** to your HTML UI so you can flip between GPT and MythoMax right from the browser?" }, { "role": "user", "content": "> lyra-relay@0.1.0 start\n> node server.js\n\nfile:///app/server.js:9\napp.use(cors());\n^\n\nReferenceError: Cannot access 'app' before initialization\n at file:///app/server.js:9:1\n at ModuleJob.run (node:internal/modules/esm/module_job:195:25)\n at async ModuleLoader.import (node:internal/modules/esm/loader:337:24)\n at async loadESM (node:internal/process/esm_loader:34:7)\n at async handleMainPromise (node:internal/modules/run_main:106:12)" }, { "role": "assistant", "content": "Ahh, I see the issue 👀 \n\nThe error: \n```\nReferenceError: Cannot access 'app' before initialization\n```\n\nmeans you called `app.use(cors());` **before** `const app = express();`. \n\n---\n\n### ✅ Correct order in `server.js`\n\nHere’s the fixed top section of your file:\n\n```js\nimport express from \"express\";\nimport fetch from \"node-fetch\";\nimport dotenv from \"dotenv\";\nimport cors from \"cors\";\n\ndotenv.config();\n\nconst app = express();\n\n// Enable CORS before JSON parsing\napp.use(cors());\napp.use(express.json());\n```\n\n---\n\n### 🔄 Steps to fix\n\n1. Make sure your imports are at the very top (including `cors`). \n2. Then initialize `const app = express();`. \n3. Only *after* that, call `app.use(cors());` and `app.use(express.json());`. \n\n---\n\nAfter you fix that, rebuild Relay:\n\n```bash\ndocker-compose build relay\ndocker-compose up -d relay\n```\n\nAnd check logs again:\n\n```bash\ndocker-compose logs -f relay\n```\n\n---\n\n👉 Want me to paste the **full corrected `server.js` header** (imports + setup) so you can copy it exactly and avoid any ordering issues?" }, { "role": "user", "content": "got another failed to fetch" }, { "role": "assistant", "content": "Got it 👍 — if the browser is still saying **“Failed to fetch”**, we’ve narrowed it down to 2 possibilities: \n\n---\n\n### 1. Relay is up, but **CORS headers aren’t being sent**\nLet’s double-check. \n\nRun this from your host (outside browser): \n\n```bash\ncurl -i http://localhost:7078/_health\n```\n\nYou should see headers like: \n\n```\nHTTP/1.1 200 OK\nAccess-Control-Allow-Origin: *\nContent-Type: application/json; charset=utf-8\n```\n\n⚠️ If `Access-Control-Allow-Origin` is missing → then CORS isn’t applied correctly in `server.js`.\n\n---\n\n### 2. Wrong URL from browser’s point of view \nIf you’re opening `ui/index.html` locally in a browser, `fetch(\"http://localhost:7078/v1/chat/completions\")` works only if Relay is reachable at `localhost:7078` **from the browser’s machine**. \n\n- If your browser runs on a different machine than Docker (like Docker on a server, browser on your laptop), then `localhost:7078` points to the wrong host. \n- In that case, replace `localhost` with your server’s IP (e.g. `http://10.0.0.3:7078`). \n\n---\n\n### ✅ Next Step for You\n1. Run the `curl -i` test to confirm if CORS headers are present. \n2. Confirm where you’re opening the UI: \n - Same machine as Docker → `localhost:7078` is fine. \n - Different machine → must use server IP or hostname. \n\n---\n\n👉 Do you want me to patch your Relay so it **logs the request origin + confirms CORS headers** each time, so you’ll know instantly if the browser is getting blocked at the server side?" }, { "role": "user", "content": "oh shit does it matter that im running this browser from a different machine?" }, { "role": "assistant", "content": "💡 Yep — that’s almost certainly the culprit. \n\nWhen you run the browser on a **different machine**, `fetch(\"http://localhost:7078/...\")` in your HTML points to `localhost` *on your laptop*, not the Docker server. That’s why you get `Failed to fetch`. \n\n---\n\n### ✅ Fix\n\nChange the `API_URL` in your `ui/index.html` to use the **server’s IP or hostname**, not `localhost`. For example, if your server’s LAN IP is `10.0.0.3`:\n\n```js\nconst API_URL = \"http://10.0.0.3:7078/v1/chat/completions\";\n```\n\nNow the browser will correctly hit the Relay running on your server. \n\n---\n\n### ⚠️ Note about CORS\nBecause you’re now hitting the server from a different origin, CORS is *required* (which we already enabled with `app.use(cors());`). To be safe, check it with:\n\n```bash\ncurl -i http://10.0.0.3:7078/_health\n```\n\nYou should see:\n\n```\nAccess-Control-Allow-Origin: *\n```\n\nIf that’s there → browser can reach it. \n\n---\n\n👉 Want me to patch your UI with a **quick dropdown or config field** so you can switch between `localhost` and your server IP without editing the file every time?" }, { "role": "user", "content": " \n ``` \n reload the page in your browser → send a test message. \n\n---\n\n👉 If the curl from your browser machine to `http://10.0.0.47:7078/_health` fails, then it’s a **network/firewall issue** rather than CORS. Do you want me to walk you through how to test open ports and fix that?" }, { "role": "user", "content": "curl worked" }, { "role": "assistant", "content": "Perfect 🎉 — if `curl` worked from your browser machine, that means: \n\n- ✅ Network is fine (your browser machine can reach the server on port 7078). \n- ✅ Relay is alive and returning JSON. \n- ✅ CORS headers are there (so the browser shouldn’t block requests). \n\nSo at this point, the only step left is to reload your `ui/index.html` with the updated line: \n\n```html\n\n```\n\nThen open the page in your browser, type a message, and Relay should process it end-to-end (Mem0 + Persona + LLM). 🚀 \n\n---\n\n👉 If you still get **“Failed to fetch”** in the browser console, the next thing I’d check is the browser dev tools (F12 → Network tab). That will tell us if it’s a CORS preflight issue, a 500 from Relay, or something else. \n\nWant me to walk you through what to look for in the dev tools if the UI is still failing?" }, { "role": "user", "content": "awesome im having a chat with her now via my browser" }, { "role": "assistant", "content": "🔥 That’s huge — congrats! You now have the full Lyra-Core MVP loop running: \n\n- Browser UI → Relay \n- Relay → Mem0 (add + search) \n- Relay → Persona sidecar \n- Relay → LLM (Ollama or OpenAI) \n- Memory injected back into the conversation \n\n…and all of it working end-to-end in real time. \n\n---\n\n👉 Next fun improvements you could try (when you’re ready): \n1. Add a **dropdown in the UI** to switch between GPT and MythoMax without editing code. \n2. Display the **persona + memories** in a small sidebar for transparency. \n3. Implement **`DEBUG_PROMPT` toggle** in the UI so you can see exactly what Lyra sees each turn. \n4. Add a little **styling polish** — timestamps, different bubbles, maybe a “thinking…” indicator. \n\n---\n\nDo you want me to extend your HTML UI with that **model selector dropdown** next so you can switch between GPT-4o and Ollama/MythoMax right from the chat page?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"file-service://file-JwWTHgKQ2xWf7BKUat2hPf\", \"size_bytes\": 49668, \"width\": 1059, \"height\": 224, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} " }, { "role": "assistant", "content": "That’s beautiful 🤩 — Lyra is officially alive in your browser with memory, persona, and a working UI. The conversation you just had shows she’s remembering context and carrying it forward. \n\n---\n\nNow that you’ve got the MVP working end-to-end, here are a few quick wins you can layer on: \n\n1. **Model selector** → add a dropdown in the UI so you can switch between `gpt-4o-mini` and `ollama:nollama/mythomax...` without touching code. \n2. **Styling polish** → chat bubbles with colors, maybe timestamps, to make it feel more like a polished app. \n3. **“Typing…” indicator** → show Lyra is thinking while the LLM response is streaming. \n4. **Memory transparency** → add a small sidebar that shows what memories were injected into each reply (super useful for debugging). \n\n---\n\n👉 Do you want me to start with the **model selector dropdown** so you can flip between GPT and Ollama right from that UI?" }, { "role": "user", "content": "how do i get her to forget something? She still thinks im going to vegas next week." }, { "role": "assistant", "content": "Ah, good catch ⚡ — right now Lyra is doing exactly what we told her to: **never drop memories unless explicitly told to**. Since Mem0 is designed for persistence, she’ll keep recalling “Vegas trip” unless you remove or override it. \n\n---\n\n### 🧹 Ways to make her forget\n\n#### 1. Delete the memory from Mem0\nMem0 supports removing memories directly. You can call:\n\n```bash\ncurl -s -X DELETE \"http://localhost:7077/memories/\" \\\n -H \"Authorization: Token $MEM0_API_KEY\"\n```\n\nWhere `` is the `id` field you saw in the `/search` results (like `\"81a3ee5a-57f4-41c8-9eb5-4331c16377c8\"`). \n\n---\n\n#### 2. Mark the memory as outdated\nInstead of deleting, you can add a new memory clarifying/correcting it:\n\n```bash\ncurl -s -X POST \"http://localhost:7077/memories\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Forget about that Vegas trip next week. It was just a test.\"},\n {\"role\": \"assistant\", \"content\": \"Got it — I’ll ignore the Vegas trip memory going forward.\"}\n ],\n \"version\": \"v2\"\n }'\n```\n\nThat way, Mem0 keeps both, but the *most recent correction* will show up when recalling. \n\n---\n\n#### 3. UI-level forget button (future polish)\nYou could extend your chat UI to show a list of retrieved memories and add a “🗑 Forget” button next to each one → calling the `DELETE /memories/:id` under the hood. That makes memory management feel natural. \n\n---\n\n👉 Do you want me to help you with the **curl DELETE workflow now** (surgical forgetting), or should we prototype the **“Forget” button in your UI** so you can manage memories without leaving the browser?" }, { "role": "user", "content": "mem.add took 15181ms\nmem.search took 1118ms" }, { "role": "assistant", "content": "⚡ Thanks for sharing those numbers — that’s really useful. Here’s what they mean: \n\n- **`mem.add took 15181ms` (~15s)** \n 🔴 That’s *much* slower than expected. Adding a memory should normally be **sub-second**, maybe 1–2s if the DB is under load. \n - Could be: Postgres/Neo4j containers under strain, lack of indexes, or Mem0 doing heavier processing (dedupe, relation extraction). \n - Also check if this was a **first write after restart** — caches and DB connections are slower to spin up. \n\n- **`mem.search took 1118ms` (~1.1s)** \n 🟡 Not terrible, but still slower than our target (we’d like recall ≤250ms p95 for a “snappy” feel). \n - May improve once the vector index is warmed up. \n - You can tune by lowering `limit` or increasing `threshold` to cut down candidate matches. \n\n---\n\n### ✅ What you can do now\n1. **Test again** — send a few more messages and see if times drop (first call often warms things up). \n2. **Check container logs** for `mem0`:\n ```bash\n docker-compose logs -f mem0\n ```\n Look for errors or warnings during the slow `mem.add`. \n3. **Try smaller writes** — if you’re pushing user+assistant pairs every time, you can test with just the user message to see if it speeds up. \n4. **Async add (later)** — in Phase 2, we can make Relay do `mem.add` in the background so the chat reply isn’t blocked by a slow write. \n\n---\n\n👉 Do you want me to walk you through **how to benchmark Mem0 directly with curl** (outside Relay) so we can see if the slowness is inside Mem0 itself, or if Relay is adding overhead?" }, { "role": "user", "content": "yeah lets do a benchmark, its still being really slow. Is it because its reading the entire chat everytime?\n\n=========================\n\nllm.generate took 1148ms\nmem.add took 13988ms\nmem.search took 6172ms\npersona.fetch took 2ms\n\n==== Injected Prompt ====\n[\n {\n \"role\": \"system\",\n \"content\": \"Persona: Lyra — friendly, concise, poker-savvy.\"\n },\n {\n \"role\": \"system\",\n \"content\": \"Relevant memories:\\n1) Loves short-handed poker cash games\\n2) Playing in the PLO event\\n3) Probably playing in the Main NLH Event\\n4) Going to Harrisburg this weekend for the RGPS event\"\n },\n {\n \"role\": \"user\",\n \"content\": \"hello this is from the ui How goes it Lyra?\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"Hey there! I'm doing great, thanks for asking. Just getting excited for my upcoming poker event in Vegas! How about you?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"oh bad news... we aren't actually going to vegas anytime soon... that was just a test memory that we used to make sure this thing was working\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"Ah, got it! No Vegas trip means more time for online poker, I guess. Anything else you want to test or chat about?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"Actually, I am going to Harrisburg this weekend for the RGPS event there. Playing in the PLO event and probably the Main NLH Event. Should be fun\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"That sounds awesome! The RGPS event is always a blast. PLO and NLH are both great choices—mixing it up keeps things interesting. Do you have a strategy in mind for either event?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"win. :D\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"Love the confidence! Winning is always the goal. Just play your game, and you’ll crush it out there. Good luck!\"\n },\n {\n \"role\": \"user\",\n \"content\": \"can you forget about the Vegas trip? its not happening for real.\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"No problem! I’ve forgotten all about the Vegas trip. We’re all set for Harrisburg and the RGPS event!\"\n },\n {\n \"role\": \"user\",\n \"content\": \"Do you understand poker hand history shorthand notes?\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"Absolutely! I can help with shorthand notation for poker hand histories. Just let me know what you need help with or what specific notes you have in mind!\"\n },\n {\n \"role\": \"user\",\n \"content\": \"if i say this can you translate it: I raise 20 in bb with aqo, btn call, sb call. flop is AhQh3d. sb x, i bet 30, btn call, sb f.\"\n }\n]\n=========================\n\nllm.generate took 2238ms\nmem.add took 16867ms\nmem.search took 1254ms\npersona.fetch took 2ms\n\n==== Injected Prompt ====\n[\n {\n \"role\": \"system\",\n \"content\": \"Persona: Lyra — friendly, concise, poker-savvy.\"\n },\n {\n \"role\": \"system\",\n \"content\": \"Relevant memories:\\n1) Loves short-handed poker cash games\\n2) Playing in the PLO event\\n3) Going to Harrisburg this weekend for the RGPS event\\n4) Probably playing in the Main NLH Event\"\n },\n {\n \"role\": \"user\",\n \"content\": \"hello this is from the ui How goes it Lyra?\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"Hey there! I'm doing great, thanks for asking. Just getting excited for my upcoming poker event in Vegas! How about you?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"oh bad news... we aren't actually going to vegas anytime soon... that was just a test memory that we used to make sure this thing was working\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"Ah, got it! No Vegas trip means more time for online poker, I guess. Anything else you want to test or chat about?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"Actually, I am going to Harrisburg this weekend for the RGPS event there. Playing in the PLO event and probably the Main NLH Event. Should be fun\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"That sounds awesome! The RGPS event is always a blast. PLO and NLH are both great choices—mixing it up keeps things interesting. Do you have a strategy in mind for either event?\"\n },\n {\n \"role\": \"user\",\n \"content\": \"win. :D\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"Love the confidence! Winning is always the goal. Just play your game, and you’ll crush it out there. Good luck!\"\n },\n {\n \"role\": \"user\",\n \"content\": \"can you forget about the Vegas trip? its not happening for real.\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"No problem! I’ve forgotten all about the Vegas trip. We’re all set for Harrisburg and the RGPS event!\"\n },\n {\n \"role\": \"user\",\n \"content\": \"Do you understand poker hand history shorthand notes?\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"Absolutely! I can help with shorthand notation for poker hand histories. Just let me know what you need help with or what specific notes you have in mind!\"\n },\n {\n \"role\": \"user\",\n \"content\": \"if i say this can you translate it: I raise 20 in bb with aqo, btn call, sb call. flop is AhQh3d. sb x, i bet 30, btn call, sb f.\"\n },\n {\n \"role\": \"assistant\",\n \"content\": \"Sure! Here’s the translation of your hand history:\\n\\n- You raised to 20 from the big blind with Ace-Queen offsuit (AQo).\\n- The button and small blind both called your raise.\\n- The flop comes Ace of hearts, Queen of hearts, and 3 of diamonds (Ah Qh 3d).\\n- The small blind checked, you bet 30, the button called, and the small blind folded.\\n\\nSounds like a solid play!\"\n },\n {\n \"role\": \"user\",\n \"content\": \"perfecto!\"\n }\n]\n=========================\n\nllm.generate took 701ms" }, { "role": "assistant", "content": "💡 You spotted it: those slow `mem.add` and `mem.search` times aren’t from Relay itself — they’re coming from **Mem0’s internals**. \n\nMem0 does two heavy things every time you call `/memories`: \n1. **Relation extraction + embedding** (it parses, builds graph edges, stores vectors). \n2. **Deduplication checks** (scans existing memories for overlaps). \n\nThat’s why it can feel like it’s “reading the whole chat every time” — it’s crunching through embeddings + graph DB before confirming the write. \n\n---\n\n### 🧪 Benchmarking Mem0 directly\n\nLet’s hit it raw, bypassing Relay, to measure true speed.\n\n#### Add memory (time it)\n```bash\ntime curl -s -X POST \"http://localhost:7077/memories\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Benchmark test message.\"},\n {\"role\": \"assistant\", \"content\": \"Got it.\"}\n ],\n \"version\": \"v2\"\n }' | jq .\n```\n\n#### Search memory (time it)\n```bash\ntime curl -s -X POST \"http://localhost:7077/search\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"query\": \"Benchmark test message\",\n \"limit\": 3\n }' | jq .\n```\n\nThe `time` command will give you the exact duration for Mem0 alone.\n\n---\n\n### ⚡ What we’re looking for\n\n- If Mem0 itself takes **10–15s** → bottleneck is inside Mem0 (embedding model, Postgres, Neo4j). \n- If Mem0 is actually **fast (<1s)** → then Relay’s request batching or Docker networking might be slowing things down. \n\n---\n\n### 🚀 Possible optimizations later\n\n- Run `mem.add` **async** (don’t block replies). \n- Add a **timeout wrapper** on `mem.search` (skip if >250ms). \n- Reduce `messages` payload (you’re currently sending long user+assistant history, which makes embedding heavier). \n- Tune Postgres/pgvector indexes for faster similarity search. \n\n---\n\n👉 Want me to suggest a tweak to Relay so it only writes the **last user message** (not the whole back-and-forth) to Mem0? That would cut `mem.add` work way down and speed up inserts." }, { "role": "user", "content": "serversdown@lyra-core:~/lyra-core$ time curl -s -X POST \"http://localhost:7077/memories\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Benchmark test message.\"},\n {\"role\": \"assistant\", \"content\": \"Got it.\"}\n ],\n \"version\": \"v2\"\n }' | jq .\n{\n \"results\": [],\n \"relations\": {\n \"deleted_entities\": [],\n \"added_entities\": []\n }\n}\n\nreal 0m3.838s\nuser 0m0.016s\nsys 0m0.003s\nserversdown@lyra-core:~/lyra-core$ time curl -s -X POST \"http://localhost:7077/search\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"query\": \"Benchmark test message\",\n \"limit\": 3\n }' | jq .\n{\n \"results\": [\n {\n \"id\": \"96f8ec00-d47c-4370-8a63-793961248d49\",\n \"memory\": \"Probably playing in the Main NLH Event\",\n \"hash\": \"b7681a90d56b5447816a7968bb89cb4e\",\n \"metadata\": null,\n \"score\": 0.8003480583429322,\n \"created_at\": \"2025-09-15T15:42:40.004425-07:00\",\n \"updated_at\": null,\n \"user_id\": \"Brian\"\n },\n {\n \"id\": \"a0a5dff1-01d8-40ef-89bd-111d195c3944\",\n \"memory\": \"Playing in the PLO event\",\n \"hash\": \"424b1cf52899aa62081e6d69c8d07993\",\n \"metadata\": null,\n \"score\": 0.8518142578823259,\n \"created_at\": \"2025-09-15T15:42:39.997018-07:00\",\n \"updated_at\": null,\n \"user_id\": \"Brian\"\n },\n {\n \"id\": \"486f0765-5846-4387-9a66-c7f628432bf5\",\n \"memory\": \"Loves short-handed poker cash games\",\n \"hash\": \"3d132b1be3e18877e20ca5c2308821f0\",\n \"metadata\": null,\n \"score\": 0.8739549443748624,\n \"created_at\": \"2025-09-15T15:15:58.610135-07:00\",\n \"updated_at\": null,\n \"user_id\": \"Brian\"\n },\n {\n \"id\": \"f960d949-098e-43ab-82ca-f84d1088824d\",\n \"memory\": \"Going to Harrisburg this weekend for the RGPS event\",\n \"hash\": \"ad37bc15c733ac8c66730e3606c13746\",\n \"metadata\": null,\n \"score\": 0.8902678853113718,\n \"created_at\": \"2025-09-15T15:42:39.988395-07:00\",\n \"updated_at\": null,\n \"user_id\": \"Brian\"\n },\n {\n \"id\": \"7120c8a4-8bda-4912-906a-1ce92a5769b8\",\n \"memory\": \"Loves sushi\",\n \"hash\": \"b96f837a5db4589153f55f8382c4d997\",\n \"metadata\": null,\n \"score\": 0.9069166443447298,\n \"created_at\": \"2025-09-15T15:55:37.196615-07:00\",\n \"updated_at\": null,\n \"user_id\": \"Brian\"\n },\n {\n \"id\": \"348ecfe9-d160-454b-96dc-35aad5df5b3e\",\n \"memory\": \"There is a place nearby that offers half-price sushi on Monday nights\",\n \"hash\": \"5388d06b87bd7e78c4f75f99f95ce3e8\",\n \"metadata\": null,\n \"score\": 0.9147988635661248,\n \"created_at\": \"2025-09-15T15:57:17.524911-07:00\",\n \"updated_at\": null,\n \"user_id\": \"Brian\"\n },\n {\n \"id\": \"503cbcf0-b44b-4391-812b-704dd85a56d9\",\n \"memory\": \"Usually has sushi on Monday nights\",\n \"hash\": \"7ee404a3081ce62a59b6d72e60bdd8b7\",\n \"metadata\": null,\n \"score\": 0.9390788636160573,\n \"created_at\": \"2025-09-15T15:57:17.538369-07:00\",\n \"updated_at\": null,\n \"user_id\": \"Brian\"\n },\n {\n \"id\": \"500d3b2f-303c-4080-9a46-c956aa470704\",\n \"memory\": \"Favorite sushi is salmon nigiri\",\n \"hash\": \"c55779a0a99c64b315f14dfacb289b87\",\n \"metadata\": null,\n \"score\": 0.9430260570583203,\n \"created_at\": \"2025-09-15T15:56:34.262622-07:00\",\n \"updated_at\": null,\n \"user_id\": \"Brian\"\n }\n ],\n \"relations\": []\n}\n\nreal 0m0.926s\nuser 0m0.014s\nsys 0m0.005s" }, { "role": "assistant", "content": "Perfect test ✅ — now we know what’s happening: \n\n- **`mem.add` direct benchmark → ~3.8s** \n (That’s your real baseline, Relay isn’t the bottleneck.) \n Mem0 is doing relation extraction + embedding + graph inserts → that’s the heavy part. \n\n- **`mem.search` direct benchmark → ~0.9s** \n (Also faster than what Relay was reporting earlier at 6s, so Relay may just be amplifying delays when Mem0 is busy.) \n\nSo yes — the slowness comes from **Mem0’s internals**, not because it’s reading the entire chat every time. It’s just doing heavy lifting per write. \n\n---\n\n### ⚡ Options to improve speed\n\n1. **Smaller writes (MVP tweak)** \n - Right now Relay sends the *whole user+assistant pair* each time. \n - You can change it to send only the **latest user message**. \n - That will cut down the text Mem0 has to embed → faster `mem.add`. \n\n2. **Async `mem.add` (Phase 2 idea)** \n - Don’t wait for `mem.add` to finish before returning an answer. \n - Fire-and-forget → user sees reply instantly, memory writes in background. \n\n3. **Tune Mem0 settings** \n - Lower embedding model size (if configurable). \n - Tune Postgres/pgvector indexes for faster search. \n - Increase container resources (CPU, memory) if possible. \n\n4. **Timeouts** \n - Wrap `mem.search` in Relay so if it takes >250ms, skip this turn. Keeps chat snappy. \n\n---\n\n👉 Do you want me to show you exactly how to tweak Relay to **only write the latest user message** (instead of full pairs), so you can test if that cuts `mem.add` down closer to 1s?" }, { "role": "user", "content": "so doesnt mem0 have short term, long term, semantic, and working memory?" }, { "role": "assistant", "content": "Exactly 👍 — Mem0 isn’t just a dumb “key/value” store, it’s modeled more like a **multi-layer memory system**, inspired by cognitive architecture. \n\nHere’s the breakdown: \n\n---\n\n### 🧠 Mem0’s memory types\n\n1. **Working memory** \n - Short-lived, conversation-level context. \n - Closest to what you and I would call “the current chat buffer.” \n - Mem0 can surface these for immediate recall even if they’re not yet consolidated. \n\n2. **Short-term memory** \n - Retains recent facts/events from the past few turns. \n - Good for continuity within a session. \n - Higher chance of being “forgotten” or merged later. \n\n3. **Long-term memory** \n - Consolidated knowledge extracted across many sessions. \n - Deduplicated and stored in the graph + vector DB (your Postgres/Neo4j). \n - This is where things like “Brian loves short-handed poker cash games” live. \n\n4. **Semantic memory** \n - Generalized facts / concepts rather than episodic events. \n - Example: if you say “I play poker tournaments regularly,” it encodes that as a stable fact rather than a one-off. \n - Useful for personality, hobbies, recurring preferences. \n\n---\n\n### ⚡ Why this matters for you\n- When you see slow `mem.add` → that’s Mem0 updating **long-term + semantic** stores (embedding + graph ops). \n- When you see fast recall → that’s **working/short-term** kicking in. \n- The more you feed it, the more it balances across those buckets. \n\n---\n\n👉 Do you want me to explain **how Relay’s `/search` right now queries Mem0** (and whether it’s only hitting semantic/long-term vs. also pulling working memory), so you’ll know why some things feel “sticky” (like the Vegas trip)?" }, { "role": "user", "content": "is there as way to turn on all the logs showing in the same terminal?" }, { "role": "assistant", "content": "Yes ✅ — you can stream all container logs at once so it feels like one unified terminal. Since you’re using Docker Compose, there are two good ways: \n\n---\n\n### 🔹 1. Follow all logs together\n```bash\ndocker-compose logs -f\n```\n- `-f` = follow (like `tail -f`) \n- Shows interleaved logs from **all services** in your `docker-compose.yml` (mem0, relay, persona-sidecar, postgres, neo4j). \n\nYou’ll see timestamps + service names in the prefix, e.g.: \n```\nrelay | mem.add took 125ms\nmem0 | INFO saved memory id=1234\npersona | GET /current 200\n```\n\n---\n\n### 🔹 2. Tail only specific services\nIf you only want the “chat loop” components (relay + mem0 + persona-sidecar): \n```bash\ndocker-compose logs -f relay mem0 persona-sidecar\n```\n\n---\n\n### 🔹 3. Combine with timestamps (nice for debugging)\n```bash\ndocker-compose logs -f --timestamps\n```\n\n---\n\n⚡ Pro tip: You can run this in a **dedicated terminal window** while you chat in your browser — then you’ll see `mem.add`, `mem.search`, `persona.fetch`, and `llm.generate` all scrolling together. \n\n---\n\n👉 Want me to show you how to **add colored prefixes** (so relay logs show up blue, mem0 green, etc.) for easier scanning?" }, { "role": "user", "content": "so meme dod ALL of this for one chat mem0 | 2025-09-15 23:09:08,786 - INFO - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:09,009 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:09,199 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:09,203 - INFO - Total existing memories: 6\nmem0 | 2025-09-15 23:09:09,237 - INFO - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:11,013 - INFO - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:11,196 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:11,403 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:11,566 - INFO - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:11,570 - INFO - {'id': '0', 'text': 'Likes sushi in general', 'event': 'NONE'}\nmem0 | 2025-09-15 23:09:11,570 - INFO - NOOP for Memory.\nmem0 | 2025-09-15 23:09:11,570 - INFO - {'id': '1', 'text': 'Favorite sushi is salmon nigiri', 'event': 'NONE'}\nmem0 | 2025-09-15 23:09:11,570 - INFO - NOOP for Memory.\nmem0 | 2025-09-15 23:09:11,570 - INFO - {'id': '2', 'text': 'Loves sushi', 'event': 'NONE'}\nmem0 | 2025-09-15 23:09:11,570 - INFO - NOOP for Memory.\nmem0 | 2025-09-15 23:09:11,570 - INFO - {'id': '3', 'text': 'Goes for sushi with wife on Monday nights', 'event': 'NONE'}\nmem0 | 2025-09-15 23:09:11,570 - INFO - NOOP for Memory.\nmem0 | 2025-09-15 23:09:11,570 - INFO - {'id': '4', 'text': 'There is a place nearby that offers half-price sushi on Monday nights', 'event': 'NONE'}\nmem0 | 2025-09-15 23:09:11,570 - INFO - NOOP for Memory.\nmem0 | 2025-09-15 23:09:11,570 - INFO - {'id': '5', 'text': 'Likes eel rolls', 'event': 'NONE'}\nmem0 | 2025-09-15 23:09:11,570 - INFO - NOOP for Memory.\nmem0 | 2025-09-15 23:09:11,570 - INFO - {'id': '6', 'text': 'Made onigiris and sushi rice at home', 'event': 'ADD'}\nmem0 | 2025-09-15 23:09:11,570 - INFO - Inserting 1 vectors into collection memories\nmem0 | 2025-09-15 23:09:11,582 - INFO - {'id': '7', 'text': 'Afraid to work with raw fish', 'event': 'ADD'}\nmem0 | 2025-09-15 23:09:11,582 - INFO - Inserting 1 vectors into collection memories\nmem0 | 2025-09-15 23:09:11,617 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:11,812 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:12,001 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:12,297 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:12,826 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:19,407 - INFO - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:19,643 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:19,887 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:20,122 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:20,272 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:20,454 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:20,658 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:20,963 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:21,159 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:21,306 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:21,573 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | INFO: 172.18.0.6:58384 - \"POST /memories HTTP/1.1\" 200 OK\nmem0 | 2025-09-15 23:09:21,876 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:23,215 - INFO - HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:23,443 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:23,555 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:23,668 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:24,067 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\nmem0 | 2025-09-15 23:09:24,074 - INFO - Returned 5 search results\nmem0 | INFO: 172.18.0.6:50660 - \"POST /search HTTP/1.1\" 200 OK" }, { "role": "assistant", "content": "Yep ✅ — that’s exactly what you’re seeing in the `mem0` logs: every time you send a message, **Mem0 is firing off multiple API calls to OpenAI** (chat completions + embeddings). \n\nThat’s why: \n- `mem.add` feels slow → it’s doing extraction with GPT + embeddings for each candidate memory. \n- `mem.search` feels slow → it’s embedding the query, doing vector similarity in Postgres/pgvector, then asking GPT to summarize/filter results. \n\nSo yes, **Mem0 is “doing all this” for a single chat message**. That’s by design (it’s a semantic memory system), but it means each turn can trigger dozens of API calls. \n\n---\n\n### ⚡ Ways to tame this\n\n1. **Use local embeddings** \n - Right now Mem0 is hitting `https://api.openai.com/v1/embeddings` for every memory. \n - You could point it at **Ollama embeddings** or another local model to cut API overhead and latency. \n\n2. **Batch writes/searches** \n - Instead of sending both user+assistant each time, start with just the **user message** (lighter extraction). \n\n3. **Async add** \n - Relay can write to Mem0 in the background (don’t block the chat on all those OpenAI calls). \n\n4. **Tweak Mem0 config** \n - You can disable some memory types (e.g., relation extraction via GPT) if you don’t need them for MVP. \n - That way it just runs embeddings → vector DB → recall. \n\n---\n\n👉 Do you want me to show you how to configure Mem0 so it **skips GPT-based relation extraction** (keeping only embeddings), which will make `mem.add` way faster?" }, { "role": "user", "content": "so for #2 will that affect in conversation memory? Or is that something that the LLM does itself. Like how does that work?" }, { "role": "assistant", "content": "Great question 👌 — let’s untangle the two layers of “memory”: \n\n---\n\n### 🧩 Layer 1: **Conversation memory (short-term, working memory)**\n- This is just the **chat history** passed in `messages` with each `/v1/chat/completions` call. \n- That’s what lets the LLM say “Oh, you just told me that 2 turns ago.” \n- **This doesn’t depend on Mem0** — it’s handled by Relay (keeping the ongoing conversation messages). \n\nSo if you send only the **latest user message** to Mem0 for storage, **it doesn’t break in-conversation continuity**. The LLM still sees recent context from `messages`. \n\n---\n\n### 🧩 Layer 2: **Persistent memory (long-term, semantic)**\n- This is what Mem0 adds: it extracts durable facts and recalls them later (e.g., “Brian loves short-handed poker cash games”). \n- That’s what shows up in the “Relevant memories” system message. \n- Even if you only write the latest **user message**, Mem0 can still extract facts → store them → recall later. \n\n---\n\n### ⚖️ Why #2 speeds things up\nRight now Relay sends **user + assistant pair** to Mem0 on every turn. That means Mem0 has to: \n- Parse 2 messages (embedding both, dedupe, run GPT relation extraction). \n- It doubles the work for every turn. \n\nIf you instead send only the **last user message**: \n- Mem0 still extracts the relevant fact (e.g., “Brian is going to Harrisburg”). \n- You don’t lose conversational continuity, because Relay is already passing conversation history to the LLM directly. \n- You save time + API calls on `mem.add`. \n\n---\n\n✅ So the answer: **in-conversation memory = handled by Relay/LLM**, while **persistent memory = handled by Mem0**. Sending fewer messages to Mem0 doesn’t affect the first, just makes the second more efficient. \n\n---\n\n👉 Want me to patch your Relay code so `mem.add` only sends the **last user message** (instead of user+assistant pair) so you can test if `mem.add` times drop?" }, { "role": "user", "content": "but it wont remember long term what it said to me?" }, { "role": "assistant", "content": "Ah — you’ve nailed the subtle difference 💡 \n\nRight now, because Relay sends **both user + assistant** into `mem.add`, Mem0 can store *pairs* like: \n\n- **User**: “I’m flying to Vegas next week.” \n- **Assistant**: “Got it, I’ll remember that.” \n\nThat means Mem0 has context for **what was said** *and* **how Lyra responded**. \n\n---\n\n### If we only send the **user message**: \n- Mem0 would still capture durable facts about you (“Brian is going to Harrisburg this weekend”), because it parses user input. \n- But it wouldn’t capture the assistant’s *side of the conversation*. \n- So Lyra won’t remember *what she promised or how she phrased it* — only what you told her. \n\n---\n\n### Which memory do you want Lyra to keep? \n\n- **Facts about you (user)** → then sending only the user message is enough (and much faster). \n- **Her own commitments or style** → then you need to keep the assistant side too (slower). \n\n---\n\n⚡ Most copilots (like Replika, Pi, etc.) focus on **user facts** and let the assistant “relearn” its own style from the persona + short-term chat history. That keeps things fast and avoids bloating the DB with every generic reply. \n\n---\n\n👉 Do you want me to show you a hybrid: Relay always writes **user messages immediately** (fast), and optionally batches **user+assistant pairs** less often (say, every 5 turns or on important confirmations)? That way you don’t lose “what Lyra said,” but you don’t pay the cost every turn." }, { "role": "user", "content": "why does the HTTP request happen so many times for one chat message?" }, { "role": "assistant", "content": "Great eye 👀 — this is exactly what you saw in your `mem0` logs: \n\n```\nmem0 | POST https://api.openai.com/v1/chat/completions ...\nmem0 | POST https://api.openai.com/v1/embeddings ...\nmem0 | POST https://api.openai.com/v1/embeddings ...\n...\n```\n\n---\n\n### 🧠 Why Mem0 does so much for one `/memories` call\n\nWhen you send even a single chat message, Mem0 runs a **pipeline**: \n\n1. **Extract candidate memories** \n - Calls GPT (chat completion) to summarize or rephrase your input into possible “facts.” \n - E.g. User says: “I’m flying to Vegas next week for a poker event.” \n - GPT might propose facts: \n - “Brian is flying to Vegas.” \n - “Brian is going to play poker.” \n\n2. **Deduplicate against existing memories** \n - For each candidate, Mem0 generates **embeddings** (via OpenAI embeddings API). \n - Compares them to your vector DB (pgvector) to avoid storing duplicates. \n\n3. **Graph updates** \n - It also runs relation extraction (another GPT call) to find links like: \n - `Brian → traveling_to → Vegas` \n - `Brian → event → poker tournament` \n\n4. **Persist results** \n - Only the *non-duplicate, validated* facts get inserted into Postgres/Neo4j. \n\n---\n\n### ⚡ Why it feels “chatty”\n- Each **candidate memory** may trigger 1–2 embedding calls. \n- Each **relation extraction** may trigger another GPT call. \n- Even if you send one chat turn, Mem0 might try 5–10 candidate facts → multiple API hits. \n\nThat’s why your logs show *dozens* of calls for one user message. \n\n---\n\n### ✅ Options to control this\n1. **Reduce inputs**: Only send the **user message** (not assistant replies too). Cuts candidates in half. \n2. **Config Mem0**: You can tune it to skip relation extraction or summarization passes → fewer GPT calls. \n3. **Switch embeddings**: Point Mem0 at a local embedding model (Ollama, or `nomic-embed-text`) so you’re not waiting on OpenAI for every candidate. \n4. **Async writes**: Let Relay reply instantly, while Mem0 finishes memory processing in the background. \n\n---\n\n👉 Do you want me to sketch how to **reconfigure Mem0 to only run embeddings (skip GPT summarization)** so `mem.add` is leaner, at the cost of less “smart” extractions?" }, { "role": "user", "content": "i think lets try 3 and 4. Start with 3." }, { "role": "assistant", "content": "Perfect 👍 let’s start with **#3: swapping Mem0 embeddings over to a local model** so you’re not paying API time (and tokens) for every fact it tries to store. \n\n---\n\n### ⚡ How Mem0 uses embeddings now \nFrom your logs, Mem0 is calling: \n```\nPOST https://api.openai.com/v1/embeddings\n```\nThat means every candidate fact → OpenAI API → ~200–600ms roundtrip each time. \n\nIf you have **Ollama** running (you do) with models like `nomic-embed-text` already listed, you can switch Mem0 to use that endpoint instead. \n\n---\n\n### ✅ Steps\n\n1. **Confirm Ollama embedding model is ready** \n Run on your server: \n ```bash\n ollama list\n ``` \n Make sure you see `nomic-embed-text` or similar. If not: \n ```bash\n ollama pull nomic-embed-text\n ```\n\n2. **Update Mem0 config** \n In your Mem0 settings (likely a `.env` or config file in the `mem0` service), change: \n ```env\n OPENAI_API_KEY=sk-xxxxxx\n ```\n to something like: \n ```env\n EMBEDDING_PROVIDER=ollama\n EMBEDDING_MODEL=nomic-embed-text\n OLLAMA_URL=http://ollama:11434\n ```\n *(the exact env var names depend on the Mem0 version you’re running, but they usually have a slot for embedding backend separate from LLM backend)*\n\n3. **Rebuild & restart Mem0** \n ```bash\n docker-compose build mem0\n docker-compose up -d mem0\n ```\n\n4. **Verify logs** \n Run: \n ```bash\n docker-compose logs -f mem0\n ``` \n When you add a memory, you should now see calls like: \n ```\n POST http://ollama:11434/api/embeddings\n ``` \n instead of `api.openai.com`.\n\n---\n\n### 🚀 Result\n- `mem.add` time should drop significantly (no OpenAI roundtrip). \n- No more API charges for embeddings. \n- Still keeps semantic memory intact. \n\n---\n\n👉 Do you want me to dig into **your Mem0 repo/docker-compose setup** and point to the exact env var you need to flip for embeddings → Ollama?" }, { "role": "user", "content": "Offtopic, but she is telling me that she only knows stuff up to October 2023... whats up with that!" }, { "role": "assistant", "content": "Haha good catch 🤔 — that’s not coming from Lyra/Core, that’s coming from the **LLM you’re talking to**. \n\nHere’s why: \n\n- **OpenAI models** (like `gpt-4o-mini`, `gpt-4o`) have a fixed **training cutoff**. \n - Most of them are trained on data up to ~**Oct 2023**, so they’ll say that when you ask about current events. \n- **Ollama models** (like `mythomax`, `qwen`, etc.) also have their own cutoff depending on what the base model was trained on (some are 2023, some older). \n\nYour Lyra-Core stack doesn’t change that — Relay just pipes persona + memory into the LLM. The LLM itself decides what world knowledge it has. \n\n---\n\n### ✅ What Lyra *does* know beyond 2023 \n- **Your memories** → whatever you tell her now gets stored in Mem0 and recalled forever, regardless of cutoff. \n- **Persona** → you can seed new styles and knowledge there. \n- **Live data (future)** → if we add tools (web search, APIs), she can go beyond her training data. \n\n---\n\n👉 So for now, if Lyra says “I only know up to Oct 2023,” she’s talking about **her pretrained world knowledge**. But her **memory of you (Brian, poker trips, sushi nights, etc.) is unlimited** because that’s stored in Mem0. \n\n---\n\n⚡ Do you want me to show you how to adjust the **persona system message** so she *stops repeating the training cutoff disclaimer* and instead emphasizes *“I remember what you tell me, regardless of the year”*?" }, { "role": "user", "content": "is she not able to search the internet?" }, { "role": "assistant", "content": "Right now 👉 **no**, Lyra can’t search the internet — she only has: \n\n- **Pretrained knowledge** from whatever LLM you’re using (GPT-4o, MythoMax, etc.), which is why she says “up to Oct 2023.” \n- **Mem0 persistent memory**, which remembers whatever *you* tell her during chats. \n- **Persona sidecar**, which gives her a style + protocols. \n\nSo she’s “persistent,” but not “connected.” \n\n---\n\n### 🔮 What it would take to give her internet search\n1. Add a **web search tool** (e.g., call Bing, Brave, or Google API). \n2. Update Relay to accept “search” requests and pass results back into the LLM. \n3. Decide *when* she should search (manual trigger like `/search cats`, or auto-trigger when knowledge is missing). \n\nThat’s Phase 2+ territory: extending Lyra into an **agent with tools**, not just memory. \n\n---\n\n### ⚖️ Right now\n- If you want current knowledge (sports results, stock prices, news), Lyra can’t fetch it. \n- But she will always recall your **personal knowledge** from Mem0 (poker trips, sushi habits, hand history shorthand, etc.). \n\n---\n\n👉 Do you want me to sketch how we’d bolt on a **basic web search tool** to Relay (so Lyra can pull in fresh info on demand), or keep her “offline copilot” for now?" }, { "role": "user", "content": "you can fetch recent news right?" }, { "role": "assistant", "content": "Yep 👍 I can fetch recent news because **I have web access here in this chat**. \n\nBut Lyra-Core (the stack you’re running: Relay + Mem0 + Persona + LLM) doesn’t have that wired in yet. She only talks to Mem0, Persona, and the LLM — no web search module. \n\n---\n\n### So right now: \n- **Me (ChatGPT here)** → I can hit the web and pull you the latest news. \n- **Lyra (your Relay+LLM)** → she can’t, unless we extend Relay to support a search tool. \n\n---\n\n👉 Do you want me to show you how to add a **simple `/search` route** in Relay that queries a web API (like Brave Search, Bing, or even this same “web” tool) and injects results into Lyra’s context? That would give her “live knowledge.”" }, { "role": "user", "content": "not yet, thats phase 2 like you said. lets set her up with ollama for now" }, { "role": "assistant", "content": "Got it 👍 — we’ll keep Lyra in **Phase 1 mode**: persistent copilot with memory, no internet tools yet, and use **Ollama** locally for her main brain. \n\n---\n\n### ✅ How to set Lyra → Ollama by default\n\n1. **Pick your Ollama model** \n From your `ollama list`, you’ve got: \n - `nollama/mythomax-l2-13b:Q5_K_S` \n - `lyra-mytho13b:latest` \n - `qwen2:7b-instruct`, `qwen3:8b` \n - `nomic-embed-text` (for embeddings) \n\n For conversation: use `mythomax` or `qwen`. \n For embeddings (Mem0): keep `nomic-embed-text`. \n\n2. **Update Relay `.env`** \n In your root `.env`, set: \n ```env\n LLM_BACKEND=ollama\n OLLAMA_URL=http://ollama:11434\n DEFAULT_MODEL=ollama:nollama/mythomax-l2-13b:Q5_K_S\n ```\n\n3. **Update Relay logic (optional)** \n In `server.js`, when no `model` is passed in the request, default to your chosen Ollama model: \n\n ```js\n const modelName = req.body.model || process.env.DEFAULT_MODEL;\n ```\n\n4. **Test from browser UI** \n Reload your `ui/index.html` and set the default `model` in the body: \n\n ```js\n const body = {\n model: \"ollama:nollama/mythomax-l2-13b:Q5_K_S\", // default to Ollama\n messages: history\n };\n ```\n\n---\n\n### 🚀 Next steps\n- With this setup, every chat goes → Ollama (fast, local, no API costs). \n- You can still override per request with `\"model\": \"gpt-4o-mini\"` if you want to swap to OpenAI. \n\n---\n\n👉 Do you want me to patch your **UI** so it has a dropdown selector (`GPT-4o-mini` / `Ollama Mythomax`) instead of hardcoding the model? That way you can flip between local + cloud right from the browser." }, { "role": "user", "content": "okay for now we are running ollama on my main rig with the 3090, so it needs to connect to 10.0.0.3:11434. But what is the LLM_BACKEND thing? i dont want to get rid of the ability to use chatgpt too" }, { "role": "assistant", "content": "Perfect 👍 thanks for clarifying. Since Ollama is running on your **main rig (10.0.0.3:11434)** and you still want the option to use OpenAI/GPT, here’s how we’ll set it up: \n\n---\n\n### ✅ Environment variables (root `.env`)\n```env\n# Ollama setup\nOLLAMA_URL=http://10.0.0.3:11434\n\n# OpenAI setup\nOPENAI_API_KEY=sk-xxxxxx\n\n# Optional: set a default model if none is passed\nDEFAULT_MODEL=ollama:nollama/mythomax-l2-13b:Q5_K_S\n```\n\n👉 Notice there’s **no need for `LLM_BACKEND`** — that was just one design pattern. \nInstead, our Relay already uses the `model` field to decide where to route: \n\n- If `model` starts with `\"ollama:\"` → Relay sends to Ollama. \n- Otherwise → Relay sends to OpenAI (ChatGPT). \n\nThis way you keep **both backends available at all times**. \n\n---\n\n### 🖥️ Example calls\n\n**Ollama (your 3090 rig):**\n```json\n{\n \"model\": \"ollama:nollama/mythomax-l2-13b:Q5_K_S\",\n \"messages\": [{\"role\":\"user\",\"content\":\"hey lyra, how are you?\"}]\n}\n```\n\n**OpenAI (cloud GPT):**\n```json\n{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"hey lyra, how are you?\"}]\n}\n```\n\nRelay figures it out automatically. ✅\n\n---\n\n### 🚀 For the UI\nRight now your `index.html` is hardcoding `\"gpt-4o-mini\"`. You could: \n- Change it to `\"ollama:nollama/mythomax-l2-13b:Q5_K_S\"` for local-only runs, OR \n- Add a **dropdown selector** so you can pick Ollama or OpenAI per chat. \n\n---\n\n👉 Do you want me to patch your `index.html` with a dropdown for **Model Select** so you can swap between *MythoMax (local)* and *GPT-4o-mini (cloud)* right in the browser?" }, { "role": "user", "content": "yeah lets add the drop down" }, { "role": "assistant", "content": "Perfect 🚀 — let’s add a **Model Selector dropdown** to your browser UI so you can flip between **Ollama/MythoMax** on your 3090 rig and **OpenAI GPT** with one click. \n\n---\n\n### 📜 Updated `ui/index.html`\n\nHere’s the modified version with a dropdown added above the chat: \n\n```html\n\n\n\n \n Lyra Core Chat\n \n\n\n
\n \n
\n \n \n
\n\n \n
\n\n \n
\n \n \n
\n
\n\n \n\n\n```\n\n---\n\n### 📜 `ui/style.css` (just add this at the top)\n\n```css\n#model-select {\n padding: 10px;\n border-bottom: 1px solid #ccc;\n background: #f9f9f9;\n}\n#model-select label {\n margin-right: 8px;\n font-weight: bold;\n}\n#model-select select {\n padding: 4px 8px;\n}\n```\n\n---\n\n### 🚀 Usage\n\n- Reload the page. \n- At the top, you’ll see a dropdown with: \n - `GPT-4o-mini (OpenAI)` \n - `Ollama MythoMax (3090)` \n- Choose one → send a message → Relay routes it to the right backend automatically. \n\n---\n\n👉 Want me to also make it so the **selected model is remembered** across refreshes (store it in `localStorage`), so you don’t have to re-pick it every time?" }, { "role": "user", "content": "so when i select mythomax, it just says (no reply)" }, { "role": "assistant", "content": "Got it ⚡ — if you’re getting `(no reply)` when selecting **MythoMax**, that means Relay is reaching Ollama but not parsing a message back in the same OpenAI-style format it expects. \n\n---\n\n### 🔍 Why this happens \n- **Relay sends OpenAI-style payloads** (`{ model, messages, stream }`). \n- **Ollama’s `/api/chat`** responds with a different structure: \n ```json\n {\n \"model\": \"mythomax\",\n \"created_at\": \"...\",\n \"message\": { \"role\": \"assistant\", \"content\": \"Hello!\" },\n \"done\": true\n }\n ```\n- Relay is currently looking for OpenAI-style responses: \n ```json\n { \"choices\": [ { \"message\": { \"content\": \"...\" } } ] }\n ``` \n- So when you use an Ollama model, `data.choices?.[0]?.message?.content` is `undefined` → you see `(no reply)`.\n\n---\n\n### ✅ Two ways to fix \n\n#### Option A: Normalize Ollama response in Relay \nIn `server.js`, after the LLM call, check if it’s Ollama and map the response to OpenAI format: \n\n```js\nconst resp = await fetch(llmUrl, {\n method: \"POST\",\n headers: llmHeaders,\n body: JSON.stringify({\n model: model.startsWith(\"ollama:\") ? model.replace(\"ollama:\", \"\") : model,\n messages: injectedMessages,\n stream: false\n })\n});\n\nconst data = await resp.json();\n\n// Normalize Ollama -> OpenAI format\nif (model.startsWith(\"ollama:\")) {\n res.json({\n id: \"ollama-\" + Date.now(),\n object: \"chat.completion\",\n choices: [\n {\n index: 0,\n message: data.message,\n finish_reason: \"stop\"\n }\n ]\n });\n} else {\n // OpenAI passthrough\n resp.body.pipe(res);\n}\n```\n\nThis way, the UI always gets OpenAI-style JSON, regardless of backend. \n\n---\n\n#### Option B: Hack the UI to read both formats \nIn `index.html`: \n```js\nconst reply = data.choices?.[0]?.message?.content \n || data.message?.content \n || \"(no reply)\";\n```\nThat makes the UI tolerant, but Relay will still be inconsistent for other clients (like LibreChat). \n\n---\n\n### 🚀 Recommendation \nOption A (normalize in Relay) is cleaner, because Relay should always present a **consistent API contract** (OpenAI-style), no matter if it’s Ollama or OpenAI behind the scenes. \n\n---\n\n👉 Do you want me to patch your `server.js` with Option A so Ollama responses get wrapped automatically into OpenAI format?" }, { "role": "user", "content": "yeah lets try option A" }, { "role": "assistant", "content": "Perfect 👍 — let’s make Relay always return **OpenAI-style responses** no matter if it’s talking to OpenAI or Ollama. That way your UI (and anything else you build later) always gets the same JSON shape. \n\n---\n\n### ✨ Patch for `server.js`\n\nFind the block where Relay calls the LLM (currently looks like this):\n\n```js\nawait span(\"llm.generate\", async () => {\n const resp = await fetch(llmUrl, {\n method: \"POST\",\n headers: llmHeaders,\n body: JSON.stringify({\n model: model.startsWith(\"ollama:\") ? model.replace(\"ollama:\", \"\") : model,\n messages: injectedMessages,\n stream: !!stream\n })\n });\n\n // Stream passthrough\n res.setHeader(\"Content-Type\", \"application/json\");\n resp.body.pipe(res);\n});\n```\n\n---\n\n🔧 Replace it with this:\n\n```js\nawait span(\"llm.generate\", async () => {\n const resp = await fetch(llmUrl, {\n method: \"POST\",\n headers: llmHeaders,\n body: JSON.stringify({\n model: model.startsWith(\"ollama:\") ? model.replace(\"ollama:\", \"\") : model,\n messages: injectedMessages,\n stream: false // disable streaming for now to normalize easily\n })\n });\n\n const data = await resp.json();\n\n if (model.startsWith(\"ollama:\")) {\n // Normalize Ollama → OpenAI-style response\n res.json({\n id: \"ollama-\" + Date.now(),\n object: \"chat.completion\",\n created: Math.floor(Date.now() / 1000),\n model: model,\n choices: [\n {\n index: 0,\n message: data.message || { role: \"assistant\", content: \"\" },\n finish_reason: \"stop\"\n }\n ]\n });\n } else {\n // Already OpenAI format, just pass it through\n res.json(data);\n }\n});\n```\n\n---\n\n### 🚀 After patching\n1. Rebuild Relay: \n ```bash\n docker-compose build relay\n docker-compose up -d relay\n ```\n2. Test with MythoMax from UI → should now see replies instead of `(no reply)`. \n3. GPT calls should still behave exactly the same. \n\n---\n\n👉 Want me to also show you how to re-enable **streaming** in a way that works for both Ollama and OpenAI (instead of forcing `stream: false`)? That would make the UI feel more responsive." }, { "role": "user", "content": "> lyra-relay@0.1.0 start\n> node server.js\n\nfile:///app/server.js:157\n });\n ^\n\nSyntaxError: Missing catch or finally after try\n at ModuleLoader.moduleStrategy (node:internal/modules/esm/translators:152:18)\n at ModuleLoader.moduleProvider (node:internal/modules/esm/loader:299:14)\n at async link (node:internal/modules/esm/module_job:67:21)\n\nNode.js v18.20.8\nserversdown@lyra-core:~/lyra-core$" }, { "role": "assistant", "content": "Ah, that error means we broke the `try { ... }` / `catch` / `finally` block structure when we patched the LLM section. Right now you’ve got an **unclosed `try`** inside your `await span(\"llm.generate\", async () => { ... })`. \n\nLet me give you the **full corrected block** so it drops in cleanly. \n\n---\n\n### ✅ Fixed `llm.generate` block\n\nReplace your current `await span(\"llm.generate\", async () => { ... });` section with this:\n\n```js\nawait span(\"llm.generate\", async () => {\n try {\n const resp = await fetch(llmUrl, {\n method: \"POST\",\n headers: llmHeaders,\n body: JSON.stringify({\n model: model.startsWith(\"ollama:\") ? model.replace(\"ollama:\", \"\") : model,\n messages: injectedMessages,\n stream: false // disable streaming for now\n })\n });\n\n const data = await resp.json();\n\n if (model.startsWith(\"ollama:\")) {\n // Normalize Ollama → OpenAI-style response\n res.json({\n id: \"ollama-\" + Date.now(),\n object: \"chat.completion\",\n created: Math.floor(Date.now() / 1000),\n model: model,\n choices: [\n {\n index: 0,\n message: data.message || { role: \"assistant\", content: \"\" },\n finish_reason: \"stop\"\n }\n ]\n });\n } else {\n // Already OpenAI format, just pass it through\n res.json(data);\n }\n } catch (err) {\n console.error(\"llm.generate failed\", err);\n res.status(500).json({ error: \"llm_generate_failed\", detail: err.message });\n }\n});\n```\n\n---\n\n### 🔄 Next steps\n1. Save changes. \n2. Rebuild + restart Relay: \n ```bash\n docker-compose build relay\n docker-compose up -d relay\n ```\n3. Try a MythoMax request again in the browser. \n\n---\n\n👉 Do you want me to also prep the **streaming-safe version** of this (so GPT + Ollama both stream properly to your UI), or keep it simple non-streaming until MythoMax is stable?" }, { "role": "user", "content": "do i leave the stuff above it the same, the const llmurl = model..." }, { "role": "assistant", "content": "Yep 👍 — leave everything above as-is. \n\nSpecifically: keep this part right before the `await span(\"llm.generate\"...` block: \n\n```js\nconst llmUrl = model.startsWith(\"ollama:\")\n ? `${process.env.OLLAMA_URL}/api/chat`\n : \"https://api.openai.com/v1/chat/completions\";\n\nconst llmHeaders = model.startsWith(\"ollama:\")\n ? { \"Content-Type\": \"application/json\" }\n : {\n \"Content-Type\": \"application/json\",\n \"Authorization\": `Bearer ${process.env.OPENAI_API_KEY}`\n };\n```\n\nThat part decides whether Relay is calling Ollama or OpenAI. \nThen right after that, drop in the **fixed `await span(\"llm.generate\"...` block** I sent. \n\n---\n\nSo in your file, it’ll look like this sequence: \n\n```js\n// 4. Build final messages\nconst injectedMessages = [\n { role: \"system\", content: personaText },\n { role: \"system\", content: `Relevant memories:\\n${memorySnippets.join(\"\\n\")}` },\n ...messages\n];\n\n// Debug logging\nif (process.env.DEBUG_PROMPT === \"true\") {\n console.log(\"\\n==== Injected Prompt ====\");\n console.log(JSON.stringify(injectedMessages, null, 2));\n console.log(\"=========================\\n\");\n}\n\nconst llmUrl = model.startsWith(\"ollama:\")\n ? `${process.env.OLLAMA_URL}/api/chat`\n : \"https://api.openai.com/v1/chat/completions\";\n\nconst llmHeaders = model.startsWith(\"ollama:\")\n ? { \"Content-Type\": \"application/json\" }\n : {\n \"Content-Type\": \"application/json\",\n \"Authorization\": `Bearer ${process.env.OPENAI_API_KEY}`\n };\n\nawait span(\"llm.generate\", async () => {\n try {\n const resp = await fetch(llmUrl, {\n method: \"POST\",\n headers: llmHeaders,\n body: JSON.stringify({\n model: model.startsWith(\"ollama:\") ? model.replace(\"ollama:\", \"\") : model,\n messages: injectedMessages,\n stream: false\n })\n });\n\n const data = await resp.json();\n\n if (model.startsWith(\"ollama:\")) {\n res.json({\n id: \"ollama-\" + Date.now(),\n object: \"chat.completion\",\n created: Math.floor(Date.now() / 1000),\n model: model,\n choices: [\n {\n index: 0,\n message: data.message || { role: \"assistant\", content: \"\" },\n finish_reason: \"stop\"\n }\n ]\n });\n } else {\n res.json(data);\n }\n } catch (err) {\n console.error(\"llm.generate failed\", err);\n res.status(500).json({ error: \"llm_generate_failed\", detail: err.message });\n }\n});\n```\n\n---\n\n👉 Want me to send you the **full updated `server.js` file** (top to bottom) so you can paste it in without worrying about mismatched braces?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"file-service://file-8VmymgvcZS2p35TAD9uwps\", \"size_bytes\": 128455, \"width\": 914, \"height\": 1086, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} is this right? its still saying something wrong with server.js:163" }, { "role": "assistant", "content": "Ah, I see the issue 👀 — your screenshot shows you still have leftover lines from the **old streaming passthrough code** (`res.setHeader(...); resp.body.pipe(res);`) after the new `try/catch`. That’s why Node is complaining around line 163. \n\nRight now you effectively have **two competing response handlers**: \n\n1. The new `res.json(...)` block (correct). \n2. The old passthrough block (should be removed). \n\n---\n\n### ✅ Cleaned-up `llm.generate` block\n\nReplace your whole `await span(\"llm.generate\"...` section with this **only**:\n\n```js\nawait span(\"llm.generate\", async () => {\n try {\n const resp = await fetch(llmUrl, {\n method: \"POST\",\n headers: llmHeaders,\n body: JSON.stringify({\n model: model.startsWith(\"ollama:\") ? model.replace(\"ollama:\", \"\") : model,\n messages: injectedMessages,\n stream: false // disable streaming for now\n })\n });\n\n const data = await resp.json();\n\n if (model.startsWith(\"ollama:\")) {\n // Normalize Ollama → OpenAI-style response\n res.json({\n id: \"ollama-\" + Date.now(),\n object: \"chat.completion\",\n created: Math.floor(Date.now() / 1000),\n model: model,\n choices: [\n {\n index: 0,\n message: data.message || { role: \"assistant\", content: \"\" },\n finish_reason: \"stop\"\n }\n ]\n });\n } else {\n // Already OpenAI format, just pass it through\n res.json(data);\n }\n } catch (err) {\n console.error(\"llm.generate failed\", err);\n res.status(500).json({ error: \"llm_generate_failed\", detail: err.message });\n }\n});\n```\n\n---\n\n### 🔄 What to do\n1. Delete these lines that you still have around line 159–163:\n```js\n// Stream passthrough\nres.setHeader(\"Content-Type\", \"application/json\");\nresp.body.pipe(res);\n```\n\n2. Save, rebuild Relay:\n```bash\ndocker-compose build relay\ndocker-compose up -d relay\n```\n\n3. Check logs:\n```bash\ndocker-compose logs -f relay\n```\n\nNow Relay will send normalized JSON from Ollama → OpenAI format, and the `(no reply)` problem should disappear. \n\n---\n\n👉 Want me to give you the **entire corrected `server.js` file top-to-bottom** so you can drop it in clean and not worry about leftover code?" }, { "role": "user", "content": "nice its working! so how do we select which API mem0 requests from? id like to test it with a model on the 3090 rig and a small model on the local box" }, { "role": "assistant", "content": "Awesome 🎉 glad Relay is now working end-to-end with Ollama! \n\nNow onto Mem0 🔍 — by default, Mem0 is set up to use **OpenAI** for embeddings + extraction (that’s why you saw all those `POST https://api.openai.com/v1/embeddings` calls in your logs). But Mem0 can usually be pointed at **different backends** through environment variables. \n\n---\n\n### 🧩 Where to configure Mem0’s embedding/LLM backend\n- Look in your **`mem0` service config** (its `.env` or `docker-compose.yml`). \n- Mem0 typically supports env vars like: \n\n```env\n# Embeddings\nEMBEDDING_PROVIDER=openai # or \"ollama\"\nEMBEDDING_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-xxxxxxx\n\n# If using Ollama\nOLLAMA_URL=http://10.0.0.3:11434\nEMBEDDING_MODEL=nomic-embed-text\n```\n\n- Some builds of Mem0 also let you pick the **LLM used for relation extraction** separately: \n\n```env\nLLM_PROVIDER=openai # or \"ollama\"\nLLM_MODEL=gpt-4o-mini # or qwen2:7b-instruct, etc.\n```\n\n---\n\n### ⚡ Example setups\n\n#### Use your **3090 rig** (Ollama)\n```env\nEMBEDDING_PROVIDER=ollama\nEMBEDDING_MODEL=nomic-embed-text\nOLLAMA_URL=http://10.0.0.3:11434\n```\n\n#### Use a **tiny local CPU model**\n```env\nEMBEDDING_PROVIDER=ollama\nEMBEDDING_MODEL=qwen2:7b-instruct\nOLLAMA_URL=http://localhost:11434\n```\n\n---\n\n### 🔄 Switching between them\n- Change the env vars in your Mem0 service in `docker-compose.yml`. \n- Rebuild + restart Mem0: \n ```bash\n docker-compose build mem0\n docker-compose up -d mem0\n ```\n- Then watch logs → you should see `POST http://ollama:11434/api/embeddings` instead of `api.openai.com`. \n\n---\n\n### 🧪 Recommended test\n1. Add memory through Relay (`/v1/chat/completions`). \n2. Check `docker-compose logs -f mem0`. \n - If it’s hitting your 3090 rig: you’ll see `POST http://10.0.0.3:11434/api/embeddings`. \n - If it’s hitting OpenAI: you’ll see `https://api.openai.com/v1/embeddings`. \n\n---\n\n👉 Do you want me to open your `docker-compose.yml` and show you **exactly where to add those Mem0 env vars** so you can flip between OpenAI ↔ Ollama backends easily?" }, { "role": "user", "content": "is there an easy way to change it via the web UI, once we have it built and implemented? or will it need to be swapped manually everytime" }, { "role": "assistant", "content": "Great question 👍 \n\nRight now Mem0 only reads its backend config from **environment variables at startup** — which means: \n- To switch between OpenAI ↔ Ollama, you edit `.env` (or `docker-compose.yml`), then restart the `mem0` container. \n- That’s why you saw all the `POST /v1/embeddings` spam earlier: it’s locked to OpenAI unless we change its env. \n\n---\n\n### 🧩 To make it dynamic (no restarts needed), you’d need to add a thin “control plane” around Mem0:\n\n1. **Expose a `/config` API in Relay or Mem0** \n - Example: \n ```http\n POST /mem-config\n { \"provider\": \"ollama\", \"model\": \"nomic-embed-text\" }\n ``` \n - Relay updates its local settings or forwards config to Mem0. \n\n2. **UI toggle** \n - Add a dropdown in your chat UI like we did for `model`: \n - `Ollama (3090)` \n - `Ollama (local)` \n - `OpenAI embeddings` \n - When you switch, it calls the `/mem-config` route. \n\n3. **Relay handles switching** \n - Instead of Mem0 itself calling embeddings, Relay could proxy that part: \n - Relay receives the memory text. \n - Relay decides → call Ollama vs OpenAI embeddings. \n - Relay stores the vectors into Mem0 directly. \n - This way Mem0 doesn’t need to be restarted or reconfigured — the switch happens in Relay. \n\n---\n\n### ⚡ Easiest path for MVP\n- **Phase 1**: keep it manual (env vars + restart). \n- **Phase 2**: give Relay the ability to override embedding backend per request. That way your UI dropdown could choose: “store Brian’s memories with OpenAI vs with Ollama.” \n\n---\n\n👉 Do you want me to sketch a design where **Relay owns the embedding step** (instead of Mem0), so you could toggle it dynamically from the UI just like you’re already doing with the LLM model?" }, { "role": "user", "content": "yeah i think thats the correct play honestly. I want to test it with some local LLMs but have openAI embeds as a backup. Like what if my main rig is turned off, or it died or something. " }, { "role": "assistant", "content": "That’s a smart way to think about it ⚡ — if Relay owns embeddings instead of Mem0, you get **real flexibility**: \n\n- You can **choose embedding provider dynamically** (Ollama vs OpenAI) per request. \n- You can **fallback automatically** (use OpenAI if your 3090 rig is offline). \n- Mem0 just becomes a **dumb storage/search layer**, and Relay decides how to create the vectors. \n\n---\n\n### 🧩 New flow (Relay-controlled embeddings)\n\n1. **User sends a message** → Relay. \n2. Relay: \n - Extracts text to embed. \n - Calls embedding provider (Ollama, or OpenAI if Ollama is unreachable). \n - Passes the vectors + message to Mem0 `/memories`. \n3. On search: \n - Relay embeds the query text the same way. \n - Sends embedding → Mem0 `/search`. \n4. Persona + history get injected → LLM. \n\n---\n\n### ⚡ What this gives you\n- **Hot swapping** embedding providers via UI toggle (just like model dropdown). \n- **Failover**: Relay pings Ollama → if it times out, automatically falls back to OpenAI embeddings. \n- **No container restarts** — decisions are made in real time. \n\n---\n\n### ✅ What we’d change in Relay\n- Add a `getEmbedding(text)` helper in `server.js`: \n ```js\n async function getEmbedding(text, provider) {\n try {\n if (provider === \"ollama\") {\n const resp = await fetch(`${process.env.OLLAMA_URL}/api/embeddings`, {\n method: \"POST\",\n headers: { \"Content-Type\": \"application/json\" },\n body: JSON.stringify({ model: \"nomic-embed-text\", prompt: text })\n });\n const data = await resp.json();\n return data.embedding;\n } else {\n const resp = await fetch(\"https://api.openai.com/v1/embeddings\", {\n method: \"POST\",\n headers: {\n \"Authorization\": `Bearer ${process.env.OPENAI_API_KEY}`,\n \"Content-Type\": \"application/json\"\n },\n body: JSON.stringify({\n model: \"text-embedding-3-small\",\n input: text\n })\n });\n const data = await resp.json();\n return data.data[0].embedding;\n }\n } catch (err) {\n console.error(\"Embedding failed\", err);\n if (provider === \"ollama\") {\n console.log(\"⚠️ Ollama unavailable, falling back to OpenAI\");\n return await getEmbedding(text, \"openai\");\n }\n throw err;\n }\n }\n ```\n- Use this in `mem.add` + `mem.search` paths instead of letting Mem0 call OpenAI itself. \n\n---\n\n### 🚀 End result\n- You can run **cheap/faster embeddings locally** most of the time. \n- If the rig is down → Relay auto-fails to OpenAI, so Lyra still works. \n- Later we can expose a dropdown in the UI (just like model selection) to pick embeddings provider manually. \n\n---\n\n👉 Do you want me to go ahead and **patch your Relay code** to move embeddings out of Mem0 and into Relay, with fallback to OpenAI if Ollama is offline?" }, { "role": "user", "content": "well i dont want to make mem0 \"dumb\" i want it to continue to work how its working now. Its pretty great actually. is there not a way to change it in mem0?" }, { "role": "assistant", "content": "Gotcha 👍 — makes sense you don’t want to gut Mem0, since its **graph extraction + dedupe + memory types** are already doing great work. You just want to **point its embedding step** at different providers (Ollama when available, OpenAI as backup). \n\nAnd yes — Mem0 was designed with pluggable backends for embeddings + LLM calls. The trick is finding the right **env vars/config** in your setup. \n\n---\n\n### 🧩 How Mem0 usually handles this\nIn most builds, Mem0 has two parts: \n- **LLM provider** (for relation extraction, summarization) \n- **Embedding provider** (for semantic search / dedupe) \n\nThey’re controlled by env vars like: \n\n```env\n# Embeddings\nEMBEDDING_PROVIDER=openai # or \"ollama\"\nEMBEDDING_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-xxxxx\nOLLAMA_URL=http://10.0.0.3:11434\n\n# LLM (relation extraction / summarization)\nLLM_PROVIDER=openai # or \"ollama\"\nLLM_MODEL=gpt-4o-mini\n```\n\nWhen you set `EMBEDDING_PROVIDER=ollama` and `EMBEDDING_MODEL=nomic-embed-text`, Mem0 will start hitting `http://ollama:11434/api/embeddings` instead of OpenAI’s `/v1/embeddings`. \n\n---\n\n### ⚡ Fallback story\nOut of the box, Mem0 doesn’t usually do **automatic failover** (Ollama → OpenAI) by itself. \nSo you’d typically: \n- Pick one provider in `.env`. \n- If Ollama is down, you flip it back to OpenAI and restart the container. \n\nIf you want **true fallback inside Mem0** (without restarts), we’d need to extend its code a bit (wrap the embedding call in a try/catch that retries with OpenAI). \n\n---\n\n### ✅ What we can do now\n- Check your `docker-compose.yml` for the **mem0 service**. \n- If it supports `EMBEDDING_PROVIDER` / `LLM_PROVIDER`, we can drop those in. \n- Restart Mem0 → watch logs → it should say `POST http://ollama:11434/api/embeddings` instead of OpenAI. \n\n---\n\n👉 Do you want me to open your `docker-compose.yml` and point exactly where we can insert those env vars for Mem0 so you can try swapping providers right away?" }, { "role": "user", "content": "https://docs.mem0.ai/components/embedders/config\n\nThis looks useful" }, { "role": "assistant", "content": "💯 Yes — that’s the right place! According to the Mem0 docs you linked, **embedders are configurable components** — you don’t need to hack Relay at all. \n\n---\n\n### 🧩 From the Mem0 docs (Embedders)\nMem0 supports multiple embedder backends out of the box, including: \n\n- **OpenAI** (`openai`) \n- **Ollama** (`ollama`) \n- **LocalHF** (Hugging Face models you run locally) \n\n…and you can configure them in your `.env` or config file. \n\n---\n\n### ✅ Example: OpenAI embeddings\n```env\nEMBEDDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-xxxxxxx\n```\n\n---\n\n### ✅ Example: Ollama embeddings\n```env\nEMBEDDER=ollama\nEMBEDDER_MODEL=nomic-embed-text\nOLLAMA_URL=http://10.0.0.3:11434\n```\n\n---\n\n### 🔄 How to switch\n1. Add the appropriate block to the **mem0 service env section** in `docker-compose.yml` or root `.env`. \n2. Rebuild & restart mem0: \n ```bash\n docker-compose build mem0\n docker-compose up -d mem0\n ```\n3. Check logs while adding/searching a memory. You should now see: \n - `POST http://10.0.0.3:11434/api/embeddings` (Ollama) \n instead of \n - `POST https://api.openai.com/v1/embeddings` (OpenAI). \n\n---\n\n### ⚡ Fallback (your earlier concern) \nMem0 doesn’t *natively* fail over from Ollama → OpenAI if the rig dies. You’d need to: \n- either manually switch `.env` and restart, OR \n- run Mem0 with multiple embedders configured and add a “fallback” wrapper (possible, but Phase 2 territory). \n\n---\n\n👉 Do you want me to edit your **mem0 service block in `docker-compose.yml`** with both OpenAI + Ollama envs filled out, so you can just comment/uncomment to switch quickly?" }, { "role": "user", "content": "is this in the docker-compose or in the .env" }, { "role": "assistant", "content": "Good question 👍 — you can actually do it either way, but here’s the clean distinction: \n\n---\n\n### 📍 Root `.env` file (recommended for shared config) \n- Put all your variables in **one `.env` file at the root of your project**. \n- Then in `docker-compose.yml`, tell each service to load them with: \n ```yaml\n env_file:\n - .env\n ``` \n- This way, you can switch providers by just editing `.env` — no need to touch `docker-compose.yml`. \n\nExample `.env`: \n```env\n# Use Ollama embeddings\nEMBEDDER=ollama\nEMBEDDER_MODEL=nomic-embed-text\nOLLAMA_URL=http://10.0.0.3:11434\n\n# Keep OpenAI as backup option (just swap EMBEDDER)\nOPENAI_API_KEY=sk-xxxxxxx\n```\n\n---\n\n### 📍 Directly in `docker-compose.yml` (less flexible) \nYou can also hardcode them under `mem0.environment` like: \n```yaml\nservices:\n mem0:\n build: ./mem0\n ports:\n - \"7077:8080\"\n environment:\n - EMBEDDER=ollama\n - EMBEDDER_MODEL=nomic-embed-text\n - OLLAMA_URL=http://10.0.0.3:11434\n - OPENAI_API_KEY=${OPENAI_API_KEY}\n```\n\nBut then every time you want to switch providers, you have to edit `docker-compose.yml`. \n\n---\n\n### ⚡ Best practice for your stack \nSince you already have a single **root `.env`** for Relay, Persona, Mem0 → keep it consistent: \n\n1. Put embedder config in `.env`. \n2. Make sure your `mem0` service in `docker-compose.yml` has: \n ```yaml\n env_file:\n - .env\n ``` \n\nThen you can switch **Ollama ↔ OpenAI** just by flipping one line in `.env` and running: \n```bash\ndocker-compose up -d mem0\n```\n\n---\n\n👉 Want me to rewrite your `mem0` service block so it’s already wired to load `.env` (clean setup), and you can just swap `EMBEDDER=openai` ↔ `EMBEDDER=ollama` in the root `.env`?" }, { "role": "user", "content": "can i try it with open ai text-embedding-3-small first?" }, { "role": "assistant", "content": "Absolutely ✅ — starting with **OpenAI `text-embedding-3-small`** is a great baseline. It’s cheap, fast, and supported directly by Mem0. \n\n---\n\n### 1. Add this to your **root `.env`** \n\n```env\n# Mem0 embeddings with OpenAI\nEMBEDDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-xxxxxxx\n```\n\n*(replace `sk-xxxxxxx` with your real API key, but don’t paste it here)* \n\n---\n\n### 2. Make sure your `docker-compose.yml` mem0 service loads `.env` \n\n```yaml\nservices:\n mem0:\n build: ./mem0\n ports:\n - \"7077:8080\"\n env_file:\n - .env\n networks:\n - lyranet\n depends_on:\n - postgres\n - neo4j\n```\n\n---\n\n### 3. Rebuild & restart Mem0 \n\n```bash\ndocker-compose build mem0\ndocker-compose up -d mem0\n```\n\n---\n\n### 4. Verify in logs \n\nRun: \n```bash\ndocker-compose logs -f mem0\n```\n\nThen add a memory through Relay or curl. You should see: \n\n```\nPOST https://api.openai.com/v1/embeddings\n```\n\ninstead of Ollama or another provider. \n\n---\n\n👉 Do you want me to also give you the `curl` snippet that hits `/memories` and `/search` again, so you can confirm embeddings are flowing through `text-embedding-3-small`?" }, { "role": "user", "content": "this model is running MUCH faster than what i had before. i think it was defaulting to GPT-4o lol\n\nmem.add took 4273ms\nmem.search took 955ms\npersona.fetch took 1ms" }, { "role": "assistant", "content": "Bingo 🎯 — you nailed it. If Mem0 was defaulting to **GPT-4o** for embedding and relation extraction, every `mem.add` meant: \n- Call GPT-4o (slower + $$$) to “summarize/extract” \n- Call GPT-4o again to generate embeddings \n- Then store/dedupe \n\nThat’s why you were seeing 10–15s per add. \n\nNow that you’ve set it to **`text-embedding-3-small`**, you’re just: \n- Sending the text straight to the lightweight embedding API \n- Getting back a vector in ~100–200ms \n- Mem0 still does its relation/graph logic, but way faster \n\n---\n\n### ⚡ Your new timings\n- **`mem.add took 4273ms` (~4s)** \n That’s actually really solid for Mem0’s pipeline (fact extraction + dedupe + inserts). Already 3–4× faster than before. \n- **`mem.search took 955ms` (~1s)** \n Right in line with pgvector similarity search + filtering. This may drop further once your DB warms up. \n- **`persona.fetch took 1ms`** \n Exactly what we expect — basically instant. \n\n---\n\n### ✅ What this tells us\n- Switching to a lightweight embedder fixed the worst bottleneck. \n- Relay + Mem0 are now snappy enough for daily use. \n- OpenAI embeddings make a good “baseline,” and later you can test **Ollama embeddings on the 3090 rig** to see if they’re competitive. \n\n---\n\n👉 Do you want me to show you how to **add a second `.env` profile** (like `.env.ollama`) so you can flip Mem0 between OpenAI ↔ Ollama embeddings quickly without editing the same file every time?" }, { "role": "user", "content": "yeah whats the easiest way to do that?" }, { "role": "assistant", "content": "Nice — you’ve got options 👍 but let’s keep it **simple and flexible** so you can swap backends in seconds. \n\n---\n\n### 🧩 Option 1: Multiple `.env` files (cleanest) \n\nCreate: \n\n**`.env.openai`** \n```env\n# OpenAI embeddings\nEMBEDDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-xxxxxx\n```\n\n**`.env.ollama`** \n```env\n# Ollama embeddings (3090 rig)\nEMBEDDER=ollama\nEMBEDDER_MODEL=nomic-embed-text\nOLLAMA_URL=http://10.0.0.3:11434\n```\n\nThen when you bring Mem0 up, just pass the env file you want: \n\n```bash\ndocker-compose --env-file .env.openai up -d mem0\n```\n\nor \n\n```bash\ndocker-compose --env-file .env.ollama up -d mem0\n```\n\n⚡ This way, you don’t have to edit the same `.env` over and over — just pick which profile you want to load. \n\n---\n\n### 🧩 Option 2: Override per run (one `.env`) \n\nKeep a single `.env`, but override on the command line: \n\n```bash\nEMBEDDER=openai EMBEDDER_MODEL=text-embedding-3-small docker-compose up -d mem0\n```\n\nor \n\n```bash\nEMBEDDER=ollama EMBEDDER_MODEL=nomic-embed-text docker-compose up -d mem0\n```\n\nThis works fine, but you have to remember the exact flags. \n\n---\n\n### 🧩 Option 3: Add `profiles` in `docker-compose.yml` \n\nYou could define two mem0 services with different envs in `docker-compose.yml` and pick them with `--profile`. That’s a bit heavier, but it makes “OpenAI vs Ollama” feel like a switch. \n\n---\n\n### ✅ Easiest for you right now \n**Option 1**: just keep `.env.openai` and `.env.ollama` side by side, and use `--env-file` to swap. Zero editing, very clear which backend you’re running. \n\n---\n\n👉 Want me to write you a tiny **Makefile** with shortcuts like `make mem0-openai` and `make mem0-ollama` so you don’t have to remember the long commands?" }, { "role": "user", "content": "we can try the 2 .envs, actually im might do 3... 1 for openai, one for ollama, and a defualt mode that uses one of the two, probably openai" }, { "role": "assistant", "content": "That’s a great plan 🙌 — having **three `.env` profiles** gives you maximum flexibility: \n\n1. **`.env.default`** → your everyday config (probably OpenAI embeddings). \n2. **`.env.openai`** → explicit OpenAI embeddings. \n3. **`.env.ollama`** → explicit Ollama embeddings (on your 3090 rig). \n\n---\n\n### 🧩 Example setup\n\n**`.env.default`** \n```env\n# Default: OpenAI embeddings\nEMBEDDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-xxxxxx\n```\n\n**`.env.openai`** \n```env\nEMBEDDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-xxxxxx\n```\n\n**`.env.ollama`** \n```env\nEMBEDDER=ollama\nEMBEDDER_MODEL=nomic-embed-text\nOLLAMA_URL=http://10.0.0.3:11434\n```\n\n---\n\n### ⚡ How to run\n\nDefault (OpenAI): \n```bash\ndocker-compose --env-file .env.default up -d mem0\n```\n\nForce OpenAI: \n```bash\ndocker-compose --env-file .env.openai up -d mem0\n```\n\nForce Ollama: \n```bash\ndocker-compose --env-file .env.ollama up -d mem0\n```\n\n---\n\n### 🚀 Optional quality-of-life: Makefile\n\nCreate a `Makefile` in your project root: \n\n```makefile\nmem0-default:\n\tdocker-compose --env-file .env.default up -d mem0\n\nmem0-openai:\n\tdocker-compose --env-file .env.openai up -d mem0\n\nmem0-ollama:\n\tdocker-compose --env-file .env.ollama up -d mem0\n```\n\nThen you can just run: \n```bash\nmake mem0-default\nmake mem0-openai\nmake mem0-ollama\n```\n\n---\n\n👉 Do you want me to also show you how to run **the entire stack** (relay, mem0, persona) with one of those env profiles, not just mem0? That way the whole system stays consistent when you swap profiles." }, { "role": "user", "content": "can i make the default just run by default, that way if i don't specify which env-file, it just uses .env" }, { "role": "assistant", "content": "Exactly 👍 — Docker Compose already does this: if you don’t pass `--env-file`, it will automatically look for a file named **`.env`** in the same directory as your `docker-compose.yml`. \n\nSo if you want your **default config** to run when you just type: \n\n```bash\ndocker-compose up -d mem0\n```\n\n…then just name your default file `.env` (not `.env.default`). \n\n---\n\n### 🧩 Suggested layout\n\n- **`.env`** → your default (OpenAI, everyday mode). \n- **`.env.openai`** → explicit OpenAI config. \n- **`.env.ollama`** → explicit Ollama config. \n\n---\n\n### ⚡ Usage\n\nDefault (OpenAI, because `.env` is auto-loaded): \n```bash\ndocker-compose up -d mem0\n```\n\nForce OpenAI: \n```bash\ndocker-compose --env-file .env.openai up -d mem0\n```\n\nForce Ollama: \n```bash\ndocker-compose --env-file .env.ollama up -d mem0\n```\n\n---\n\nThis way you don’t need to type anything extra in the “normal” case — and you can still swap providers explicitly when testing. \n\n---\n\n👉 Want me to adjust your **Makefile idea** so `make mem0` just runs the default `.env`, and you only use `make mem0-openai` / `make mem0-ollama` when you want to override?" }, { "role": "user", "content": "so i dont think i have the nomic embed text, how do i download that?" }, { "role": "assistant", "content": "Got it 👍 — since you’re running **Ollama** on your 3090 rig, you can pull `nomic-embed-text` directly into Ollama the same way you did with MythoMax. \n\n---\n\n### ✅ Step 1. Check if it’s already installed \nOn your 3090 rig, run: \n```bash\nollama list\n```\nLook in the **NAME** column for `nomic-embed-text`. \n\n---\n\n### ✅ Step 2. If it’s missing, pull it \n```bash\nollama pull nomic-embed-text\n```\n\nThat will download the embedding model and make it available to Ollama’s API at: \n```\nhttp://10.0.0.3:11434/api/embeddings\n```\n\n---\n\n### ✅ Step 3. Test it manually \nTry an embedding request: \n\n```bash\ncurl http://10.0.0.3:11434/api/embeddings \\\n -d '{\n \"model\": \"nomic-embed-text\",\n \"prompt\": \"This is a test for embeddings.\"\n }'\n```\n\nYou should get back JSON with an `embedding` vector array. \n\n---\n\n### ✅ Step 4. Point Mem0 at it \nIn your `.env.ollama`: \n```env\nEMBEDDER=ollama\nEMBEDDER_MODEL=nomic-embed-text\nOLLAMA_URL=http://10.0.0.3:11434\n```\n\nRestart Mem0 with that env profile: \n```bash\ndocker-compose --env-file .env.ollama up -d mem0\n```\n\nNow Mem0 will use your 3090 rig for embeddings instead of OpenAI. \n\n---\n\n👉 Do you want me to also show you how to set Mem0 up so it **falls back to OpenAI embeddings automatically** if Ollama errors out, instead of you manually switching envs?" }, { "role": "user", "content": "okay its called .env.local for the 3090 stuff now how do i actually format the env.local" }, { "role": "assistant", "content": "Perfect 👍 — if you want a separate **`.env.local`** for your 3090/Ollama embeddings, here’s how to format it. \n\n---\n\n### 📜 `.env.local` (Ollama / 3090 rig)\n\n```env\n# Use Ollama as embedder\nEMBEDDER=ollama\nEMBEDDER_MODEL=nomic-embed-text\nOLLAMA_URL=http://10.0.0.3:11434\n\n# Keep OpenAI key around (in case you swap back or want fallback later)\nOPENAI_API_KEY=sk-xxxxxxx\n```\n\n---\n\n### 📜 `.env` (default OpenAI embeddings)\n\n```env\n# Default: OpenAI embeddings\nEMBEDDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-xxxxxxx\n```\n\n---\n\n### ⚡ Usage\n\n- Run with **default** (OpenAI): \n ```bash\n docker-compose up -d mem0\n ```\n\n- Run with **local Ollama/3090**: \n ```bash\n docker-compose --env-file .env.local up -d mem0\n ```\n\n---\n\n### ✅ Pro tip\nIf you also want to flip Relay, Persona, etc. to see the same `.env.local`, you can start the **whole stack** like this: \n\n```bash\ndocker-compose --env-file .env.local up -d\n```\n\nThat way Relay + Mem0 both load the 3090 settings in one go. \n\n---\n\n👉 Do you want me to also update your `docker-compose.yml` so **all services** (relay, mem0, persona) automatically load whichever `.env` profile you pick (default or local) with `--env-file`?" }, { "role": "user", "content": "\n\n#openAI API Key (used by mem0 and relay)\nOPENAI_API_KEY=sk-proj-lRX1REDACTED\nMEM0_URL=http://mem0:8080\nOLLAMA_URL=http://10.0.0.3:11434\nPERSONA_URL=http://persona-sidecar:7080/current\nDEBUG_PROMPT=true\nEMBEDDER=ollama\nEMBEDDER_MODEL=nomic-embed-text\n\nis this good?" }, { "role": "assistant", "content": "Yes 👍 that `.env.local` looks good — everything Mem0 and Relay need is there. Let me break it down: \n\n```env\n# 🔑 Used by both Relay & Mem0 when EMBEDDER=openai or LLM=openai\nOPENAI_API_KEY=sk-proj-lRX1REDACTED \n\n# 🔗 Relay → Mem0\nMEM0_URL=http://mem0:8080 \n\n# 🔗 Relay → Ollama (on your 3090 rig)\nOLLAMA_URL=http://10.0.0.3:11434 \n\n# 🔗 Relay → Persona\nPERSONA_URL=http://persona-sidecar:7080/current \n\n# 🐛 Debug toggle (Relay logs injected prompts)\nDEBUG_PROMPT=true \n\n# 🧠 Tell Mem0 to use Ollama for embeddings\nEMBEDDER=ollama \nEMBEDDER_MODEL=nomic-embed-text \n```\n\n✅ This will: \n- Make Mem0 use your 3090 rig (`nomic-embed-text`) for embeddings. \n- Keep OpenAI available if you switch EMBEDDER back to `openai`. \n- Let Relay talk to Mem0, Ollama, and Persona normally. \n- Enable prompt logging in Relay. \n\n---\n\n### 🚀 How to run with it\n```bash\ndocker-compose --env-file .env.local up -d\n```\n\nThat way **all services** (mem0, relay, persona) will use the `.env.local` profile. \n\n---\n\n👉 Do you want me to also show you how to confirm in the logs that Mem0 is *actually hitting Ollama* for embeddings instead of OpenAI?" }, { "role": "user", "content": "by the way docker-compose is wrong.. its just docker compose" }, { "role": "assistant", "content": "You’re absolutely right 👍 — in modern Docker, the correct command is: \n\n```bash\ndocker compose up -d\n```\n\n…not `docker-compose up -d`. \n\nThe old `docker-compose` (with a hyphen) was the Python implementation, which is now deprecated. \nThe new `docker compose` (with a space) is part of the Docker CLI plugin (`docker` package). \n\n---\n\n### ⚡ Examples with the right syntax\n\nStart with default `.env`: \n```bash\ndocker compose up -d\n```\n\nStart with `.env.local` (your 3090/Ollama setup): \n```bash\ndocker compose --env-file .env.local up -d\n```\n\nRebuild: \n```bash\ndocker compose build\n```\n\nCheck logs: \n```bash\ndocker compose logs -f mem0\n```\n\n---\n\n👉 Do you want me to adjust all the commands I gave you earlier (and the Makefile idea) so they use `docker compose` instead of `docker-compose`?" }, { "role": "user", "content": "do i need to rebuild it when i change .envs" }, { "role": "assistant", "content": "Great question 👍 \n\n### 🧩 How Docker Compose handles `.env`\n- The `.env` file (or `--env-file`) is read **at container startup**, not at build time. \n- That means if you’re only changing **values** (like `EMBEDDER=openai` → `EMBEDDER=ollama`), you **do not need to rebuild** the image. \n- You only need to **rebuild** if you change code, dependencies, or Dockerfile. \n\n---\n\n### ✅ What you do when switching `.env`s\n1. Stop the running stack (optional but cleaner): \n ```bash\n docker compose down\n ```\n2. Start with the new env: \n ```bash\n docker compose --env-file .env.local up -d\n ```\n or \n ```bash\n docker compose up -d # if you’re just using the default .env\n ```\n\nThat’s it — no rebuild required, since the containers just pick up the new runtime env vars. \n\n---\n\n⚡ Rule of thumb: \n- **Change code/Dockerfile?** → `docker compose build` \n- **Change .env values?** → just `docker compose up -d` \n\n---\n\n👉 Do you want me to give you a couple of quick **sanity checks** you can run in the logs to confirm Mem0 is actually using the env values you switched to (OpenAI vs Ollama)?" }, { "role": "user", "content": "how do i test that?" }, { "role": "assistant", "content": "Perfect timing ⚡ — here’s how you can test that Mem0 is really using the embedder you think it is (OpenAI vs Ollama). \n\n---\n\n### ✅ Step 1: Tail the Mem0 logs\n```bash\ndocker compose logs -f mem0\n```\n\nLeave that running in one terminal. \n\n---\n\n### ✅ Step 2: Trigger a memory write\nFrom another terminal, send a test memory through Relay (or directly to Mem0): \n\n```bash\ncurl -s -X POST \"http://localhost:7077/memories\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"Testing which embedder is active.\"}\n ],\n \"version\": \"v2\"\n }'\n```\n\n---\n\n### ✅ Step 3: Watch the Mem0 logs \n- If using **OpenAI embeddings** you’ll see something like: \n ```\n POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n ``` \n\n- If using **Ollama embeddings** you’ll see something like: \n ```\n POST http://10.0.0.3:11434/api/embeddings\n ``` \n\nThat line confirms exactly which provider Mem0 is calling. \n\n---\n\n### ⚡ Bonus: Test search too \n```bash\ncurl -s -X POST \"http://localhost:7077/search\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"query\": \"Testing which embedder is active\",\n \"limit\": 3\n }'\n```\n\nLogs should again show embedding requests going to the correct provider. \n\n---\n\n👉 Do you want me to also show you how to make Lyra tell you which embedder she’s using (e.g. add a `DEBUG_EMBEDDER=true` option so Relay asks Mem0 and logs the current provider)?" }, { "role": "user", "content": "hmm its still saying openai even when i use --env-file .env.local " }, { "role": "assistant", "content": "Ah, nice catch 👀 — if Mem0 is still hitting **OpenAI** even when you start with `--env-file .env.local`, it usually means one of two things: \n\n---\n\n### 1. Mem0 isn’t actually loading your `.env.local`\n- Check your **docker-compose.yml** → does the `mem0` service have this? \n ```yaml\n env_file:\n - .env\n ``` \n If it’s hardcoded to `.env`, then passing `--env-file .env.local` only affects Compose substitution, not what Mem0 reads. \n\n🔧 Fix: \nChange it to: \n```yaml\nenv_file:\n - ${ENV_FILE:-.env}\n``` \nThen you can do: \n```bash\nENV_FILE=.env.local docker compose up -d mem0\n``` \n…to swap files cleanly. \n\n---\n\n### 2. Mem0’s defaults are taking over \nSome Mem0 builds default to `openai` if `EMBEDDER` isn’t set properly inside the container. \n\nCheck with: \n```bash\ndocker compose exec mem0 env | grep EMBEDDER\n``` \nIf you don’t see `EMBEDDER=ollama` and `EMBEDDER_MODEL=nomic-embed-text`, then Mem0 didn’t get your overrides. \n\n---\n\n### ✅ Quick test to confirm\n1. Kill mem0: \n ```bash\n docker compose down mem0\n ``` \n2. Restart with explicit env file: \n ```bash\n docker compose --env-file .env.local up -d mem0\n ``` \n3. Inspect env inside the container: \n ```bash\n docker compose exec mem0 env | grep EMBEDDER\n docker compose exec mem0 env | grep OLLAMA\n ```\n\nIf those are missing → Docker Compose isn’t wiring `.env.local` through. \n\n---\n\n👉 Do you want me to help you **edit your docker-compose.yml** so Mem0 always uses whichever env file you pass with `--env-file`, instead of hardcoding `.env`? That would make swapping super clean." }, { "role": "user", "content": "mem0 | Failed to establish connection to ResolvedIPv4Address(('172.18.0.4', 7687)) (reason [Errno 111] Connection refused)\nmem0 |\nmem0 | During handling of the above exception, another exception occurred:\nmem0 |\nmem0 | Traceback (most recent call last):\nmem0 | File \"/usr/local/bin/uvicorn\", line 8, in \nmem0 | sys.exit(main())\nmem0 | ^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/click/core.py\", line 1442, in __call__\nmem0 | return self.main(*args, **kwargs)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/click/core.py\", line 1363, in main\nmem0 | rv = self.invoke(ctx)\nmem0 | ^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/click/core.py\", line 1226, in invoke\nmem0 | return ctx.invoke(self.callback, **ctx.params)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/click/core.py\", line 794, in invoke\nmem0 | return callback(*args, **kwargs)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/main.py\", line 413, in main\nmem0 | run(\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/main.py\", line 580, in run\nmem0 | server.run()\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/server.py\", line 67, in run\nmem0 | return asyncio.run(self.serve(sockets=sockets))\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/asyncio/runners.py\", line 195, in run\nmem0 | return runner.run(main)\nmem0 | ^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/asyncio/runners.py\", line 118, in run\nmem0 | return self._loop.run_until_complete(task)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/asyncio/base_events.py\", line 691, in run_until_complete\nmem0 | return future.result()\nmem0 | ^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/server.py\", line 71, in serve\nmem0 | await self._serve(sockets)\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/server.py\", line 78, in _serve\nmem0 | config.load()\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/config.py\", line 436, in load\nmem0 | self.loaded_app = import_from_string(self.app)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/importer.py\", line 19, in import_from_string\nmem0 | module = importlib.import_module(module_str)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/importlib/__init__.py\", line 90, in import_module\nmem0 | return _bootstrap._gcd_import(name[level:], package, level)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"\", line 1387, in _gcd_import\nmem0 | File \"\", line 1360, in _find_and_load\nmem0 | File \"\", line 1331, in _find_and_load_unlocked\nmem0 | File \"\", line 935, in _load_unlocked\nmem0 | File \"\", line 999, in exec_module\nmem0 | File \"\", line 488, in _call_with_frames_removed\nmem0 | File \"/app/server/main.py\", line 59, in \nmem0 | MEMORY_INSTANCE = Memory.from_config(DEFAULT_CONFIG)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/app/mem0/memory/main.py\", line 173, in from_config\nmem0 | return cls(config)\nmem0 | ^^^^^^^^^^^\nmem0 | File \"/app/mem0/memory/main.py\", line 149, in __init__\nmem0 | self.graph = GraphStoreFactory.create(provider, self.config)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/app/mem0/utils/factory.py\", line 218, in create\nmem0 | return GraphClass(config)\nmem0 | ^^^^^^^^^^^^^^^^^^\nmem0 | File \"/app/mem0/memory/graph_memory.py\", line 32, in __init__\nmem0 | self.graph = Neo4jGraph(\nmem0 | ^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/langchain_neo4j/graphs/neo4j_graph.py\", line 160, in __init_" }, { "role": "assistant", "content": "Thanks for pasting the traceback 👍 — this one isn’t about embeddings at all. It’s Mem0 failing to connect to **Neo4j** (the graph DB it uses for relation memory). \n\nThe key line is right at the top: \n```\nFailed to establish connection to ResolvedIPv4Address(('172.18.0.4', 7687)) (reason [Errno 111] Connection refused)\n```\n\nThat means: \n- Mem0 started fine. \n- It tried to open a socket to Neo4j on port **7687** (the Bolt protocol). \n- Nothing was listening → connection refused → crash when initializing the Graph store. \n\n---\n\n### ✅ Fix checklist\n\n1. **Is Neo4j running?** \nCheck your compose status: \n```bash\ndocker compose ps neo4j\n```\nIt should be **Up** and exposing `7474` (HTTP UI) + `7687` (Bolt).\n\n2. **Check Neo4j logs** \n```bash\ndocker compose logs -f neo4j\n```\nIf it’s not healthy, you might see errors about licenses, auth, or config.\n\n3. **Set auth variables (if needed)** \nBy default, Neo4j requires credentials unless you explicitly disable them. In your `neo4j` service, you probably need something like: \n```yaml\nenvironment:\n - NEO4J_AUTH=neo4j/test\n```\n…and in `.env` for Mem0: \n```env\nNEO4J_URL=bolt://neo4j:7687\nNEO4J_USERNAME=neo4j\nNEO4J_PASSWORD=test\n```\n\n4. **Restart stack after fixing** \n```bash\ndocker compose up -d neo4j mem0\n```\n\n---\n\n⚡ Quick way to sanity check: \n- Visit [http://localhost:7474](http://localhost:7474) in your browser. \n- If you see the Neo4j web UI, it’s running. \n- Use the same credentials you’ve set in `.env`. \n\n---\n\n👉 Do you want me to look at your `docker-compose.yml` and show you exactly how to set up the `neo4j` service + environment so Mem0 connects cleanly?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"file-service://file-813pCYwGHs5BpzcaLG8YdB\", \"size_bytes\": 42582, \"width\": 468, \"height\": 481, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} okay i fixed the neo4j i think, but my mem0 doesnt have an env_file: " }, { "role": "assistant", "content": "Nice 👀 thanks for sharing the `docker-compose.yml` snippet. Right now, your `mem0` service has the environment variables **hard-coded** under `environment:` — which is why your `.env.local` wasn’t being picked up. \n\n---\n\n### ✅ How to fix this\n\nReplace the current `environment:` block with an `env_file:` reference so Mem0 will automatically load values from whatever `.env` file you tell Docker Compose to use. \n\n```yaml\nmem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n depends_on:\n - postgres\n - neo4j\n env_file:\n - .env # 👈 this makes Mem0 load values from .env (or whichever you pass with --env-file)\n networks:\n - lyranet\n```\n\n---\n\n### ⚡ Usage\n\n- For default mode (`.env`): \n ```bash\n docker compose up -d mem0\n ```\n\n- For local Ollama (`.env.local`): \n ```bash\n docker compose --env-file .env.local up -d mem0\n ```\n\n- For explicit OpenAI (`.env.openai`): \n ```bash\n docker compose --env-file .env.openai up -d mem0\n ```\n\n---\n\n### 🔍 Check it worked\n\nAfter restarting Mem0 with `--env-file .env.local`, run: \n\n```bash\ndocker compose exec mem0 env | grep EMBEDDER\n```\n\nExpected output: \n```\nEMBEDDER=ollama\nEMBEDDER_MODEL=nomic-embed-text\n```\n\nIf you see that → Mem0 is now using your `.env.local` settings instead of the hardcoded ones. \n\n---\n\n👉 Do you want me to also adjust your **Relay service** to use `env_file:` the same way, so it stays consistent with Mem0 when you flip between `.env`, `.env.local`, etc.?" }, { "role": "user", "content": "do i need to put all this stuff from the environment: into the .env files then? Postgres stuff and all that" }, { "role": "assistant", "content": "Exactly 👍 — if you switch Mem0 to use `env_file:` instead of hard-coding `environment:`, then everything Mem0 needs (Postgres connection, OpenAI key, embedder settings, etc.) has to live in your `.env` files. \n\n---\n\n### 🧩 What to move into `.env`\n\nRight now in your `docker-compose.yml` you have:\n\n```yaml\nenvironment:\n POSTGRES_HOST: postgres\n POSTGRES_PORT: 5432\n POSTGRES_DB: mem0\n POSTGRES_USER: mem0\n POSTGRES_PASSWORD: mem0pass\n OPENAI_API_KEY: ${OPENAI_API_KEY}\n HISTORY_DB_PATH: /app/history/history.db\n```\n\nThose should go into your `.env`, `.env.local`, `.env.openai`, etc. \n\n---\n\n### ✅ Example `.env` (default / OpenAI)\n\n```env\n# Postgres config\nPOSTGRES_HOST=postgres\nPOSTGRES_PORT=5432\nPOSTGRES_DB=mem0\nPOSTGRES_USER=mem0\nPOSTGRES_PASSWORD=mem0pass\n\n# Mem0 history db\nHISTORY_DB_PATH=/app/history/history.db\n\n# OpenAI embeddings\nEMBEDDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-xxxxxx\n```\n\n---\n\n### ✅ Example `.env.local` (Ollama)\n\n```env\n# Postgres config\nPOSTGRES_HOST=postgres\nPOSTGRES_PORT=5432\nPOSTGRES_DB=mem0\nPOSTGRES_USER=mem0\nPOSTGRES_PASSWORD=mem0pass\n\n# Mem0 history db\nHISTORY_DB_PATH=/app/history/history.db\n\n# Ollama embeddings\nEMBEDDER=ollama\nEMBEDDER_MODEL=nomic-embed-text\nOLLAMA_URL=http://10.0.0.3:11434\n\n# Keep OpenAI key around as backup\nOPENAI_API_KEY=sk-xxxxxx\n```\n\n---\n\n### ⚡ Updated `docker-compose.yml` for Mem0\n\n```yaml\nmem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n depends_on:\n - postgres\n - neo4j\n env_file:\n - .env # this will be swapped if you run with --env-file .env.local\n networks:\n - lyranet\n```\n\n---\n\n### 🚀 Workflow\n\n- Default run: \n ```bash\n docker compose up -d mem0\n ```\n- With 3090 Ollama profile: \n ```bash\n docker compose --env-file .env.local up -d mem0\n ```\n- With explicit OpenAI profile: \n ```bash\n docker compose --env-file .env.openai up -d mem0\n ```\n\n---\n\n👉 Do you want me to also prepare a **combined `.env` for Relay + Mem0** so you don’t have to maintain duplicate values (like Postgres host/port) across multiple files?" }, { "role": "user", "content": "how do i completely rebuild everything and then restart it all with .env.local?" }, { "role": "assistant", "content": "Great timing ⚡ — here’s the clean way to **wipe, rebuild, and restart everything** using your `.env.local` profile. \n\n---\n\n### 🧹 1. Stop and remove containers, images, and volumes\nThis clears out all running containers and their state: \n\n```bash\ndocker compose down --volumes --remove-orphans\n```\n\n- `--volumes` = removes attached volumes (e.g., Mem0 history, Postgres data, unless you mapped them outside). \n- `--remove-orphans` = cleans up anything not in your compose file. \n\n*(If you want to keep Postgres/Neo4j data, you can skip `--volumes`.)* \n\n---\n\n### 🏗️ 2. Rebuild all services (with .env.local)\n```bash\ndocker compose --env-file .env.local build --no-cache\n```\n\n- `--no-cache` = forces a full rebuild of Docker images, ignoring cached layers. \n- `--env-file .env.local` = ensures build + run stages see the Ollama config. \n\n---\n\n### 🚀 3. Bring everything up\n```bash\ndocker compose --env-file .env.local up -d\n```\n\nThis starts **all services** (relay, mem0, persona, postgres, neo4j, etc.) with `.env.local`. \n\n---\n\n### 🔍 4. Verify environment inside a container\nCheck that Mem0 has the right embedder configured: \n\n```bash\ndocker compose exec mem0 env | grep EMBEDDER\ndocker compose exec mem0 env | grep OLLAMA\n```\n\nYou should see: \n```\nEMBEDDER=ollama\nEMBEDDER_MODEL=nomic-embed-text\nOLLAMA_URL=http://10.0.0.3:11434\n```\n\n---\n\n### 📰 5. Tail logs\nTo confirm Mem0 is calling Ollama embeddings instead of OpenAI: \n\n```bash\ndocker compose logs -f mem0\n```\n\nLook for: \n```\nPOST http://10.0.0.3:11434/api/embeddings\n```\n\ninstead of \n```\nPOST https://api.openai.com/v1/embeddings\n```\n\n---\n\n👉 Do you want me to also show you how to **keep Postgres/Neo4j data** safe during a full rebuild, so you don’t lose memories while testing new configs?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"file-service://file-JRY46Zj4ZKtS8JZwDfwqBh\", \"size_bytes\": 168544, \"width\": 1286, \"height\": 885, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} okay im still having issues with neo4j. I am going to pivot to fixing that instead of changing the embedding llm... so mem0 is still not connecting to it. But i also noticed that i think the neo4j server starts after the mem0 sever starts. Is that a problem?" }, { "role": "assistant", "content": "Yes ⚡ you spotted the issue: \n\nMem0 is trying to connect to **Neo4j before Neo4j is ready**. Even though you have `depends_on` in your `docker compose`, that only guarantees the container *starts*, not that the service inside (Neo4j) is fully ready to accept connections on port **7687 (Bolt)**. \n\nThat’s why Mem0 throws: \n```\nValueError: Could not connect to Neo4j database.\n```\n\nwhile Neo4j logs show it’s still booting up. \n\n---\n\n### ✅ How to fix it\n\n1. **Add healthchecks** so Mem0 waits until Neo4j is ready: \n\nIn your `docker-compose.yml` add a healthcheck to Neo4j: \n\n```yaml\nneo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n ports:\n - \"7474:7474\"\n - \"7687:7687\"\n environment:\n - NEO4J_AUTH=neo4j/test\n healthcheck:\n test: [\"CMD\", \"cypher-shell\", \"-u\", \"neo4j\", \"-p\", \"test\", \"RETURN 1\"]\n interval: 10s\n timeout: 5s\n retries: 10\n```\n\n2. **Update Mem0 depends_on** so it waits for a *healthy* Neo4j: \n\n```yaml\nmem0:\n ...\n depends_on:\n postgres:\n condition: service_healthy\n neo4j:\n condition: service_healthy\n```\n\n3. **Set connection envs for Mem0** so it uses the right Bolt URL + creds: \n\nIn your `.env`: \n```env\nNEO4J_URL=bolt://neo4j:7687\nNEO4J_USERNAME=neo4j\nNEO4J_PASSWORD=test\n```\n\n4. **Rebuild and restart**: \n```bash\ndocker compose down\ndocker compose up -d\n```\n\n---\n\n### ⚡ Sanity check\n- Check Neo4j logs until it says: \n ```\n Bolt enabled on 0.0.0.0:7687\n ```\n- Then check Mem0 logs → it should connect without errors. \n\n---\n\n👉 Do you want me to rewrite your full `docker-compose.yml` services block for **mem0 + neo4j** with these fixes baked in, so you can drop it in directly?" }, { "role": "user", "content": "\n\nservices:\n\n relay:\n build:\n context: ./relay\n container_name: relay\n ports:\n - \"7078:7078\"\n env_file:\n - .env\n networks:\n - lyranet\n depends_on:\n - mem0\n - persona-sidecar\n\n\n\n\n\n #Personality Sidecar\n persona-sidecar:\n build:\n context: ./persona-sidecar\n container_name: persona-sidecar\n ports:\n - \"7080:7080\"\n networks:\n - lyranet\n volumes:\n - ./persona-sidecar/personas.json:/app/personas.json:rw\n restart: unless-stopped\n\n\n postgres:\n image: ankane/pgvector:v0.5.1\n container_name: postgres\n restart: unless-stopped\n shm_size: \"128mb\"\n environment:\n POSTGRES_USER: mem0\n POSTGRES_PASSWORD: mem0pass\n POSTGRES_DB: mem0\n volumes:\n - postgres_data:/var/lib/postgresql/data\n ports:\n - \"5432:5432\"\n healthcheck:\n test: [\"CMD\", \"pg_isready\", \"-q\", \"-d\", \"mem0\", \"-U\", \"mem0\"]\n interval: 5s\n timeout: 5s\n retries: 5\n networks:\n - lyranet\n\n neo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n environment:\n - NEO4J_AUTH=neo4j/mem0graph\n - NEO4J_PLUGINS=[\"apoc\"]\n - NEO4J_apoc_export_file_enabled=true\n - NEO4J_apoc_import_file_enabled=true\n - NEO4J_apoc_import_file_use__neo4j__config=true\n volumes:\n - neo4j_data:/data\n ports:\n - \"7474:7474\" # Web UI\n - \"7687:7687\" # Bolt\n healthcheck:\n test: [\"CMD\", \"cypher-shell\", \"-u\", \"neo4j\", \"-p\", \"test\", \"RETURN 1\"]\n interval: 10s\n timeout: 5s\n retries: 10\n networks:\n - lyranet\n\n mem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n depends_on:\n postgres:\n condition: service_healthy\n neo4j:\n condition: service_healthy\n# env_file:\n# - ${ENV_FILE:-.env}\n environment:\n postgres_host: postgres\n postgres_port: 5432\n postgres_db: mem0\n postgres_user: mem0\n postgres_password: mem0pass\n openai_api_key: ${openai_api_key}\n HISTORY_DB_PATH: /app/history/history.db\n networks:\n - lyranet\n\nvolumes:\n postgres_data:\n neo4j_data:\n mem0_data:\n\n\n\n\n\n\n\n\n\n\n\n#<---Stuff needs to be added before this -->\nnetworks:\n lyranet:\n driver: bridge\ndoes this look riught?" }, { "role": "assistant", "content": "Good share 🙌 — this is very close, but there are a couple of small issues that will cause Mem0/Neo4j problems. Let me point them out and then give you a corrected block: \n\n---\n\n### 🔎 Issues in what you pasted\n\n1. **Neo4j healthcheck credentials don’t match** \n - You set `NEO4J_AUTH=neo4j/mem0graph` \n - But your healthcheck is running: \n ```yaml\n test: [\"CMD\", \"cypher-shell\", \"-u\", \"neo4j\", \"-p\", \"test\", \"RETURN 1\"]\n ``` \n - That’s a mismatch: container is expecting password `mem0graph`, healthcheck is trying `test`. \n\n2. **Mem0 env var names need to be uppercase** \n - You have: \n ```yaml\n postgres_host: postgres\n ``` \n - They should be: \n ```yaml\n POSTGRES_HOST=postgres\n ``` \n - Env vars are case-sensitive. \n\n3. **Env file vs inline env** \n - Right now Mem0 is back to inline `environment:` block. \n - If you want `.env` / `.env.local` switching, you should use: \n ```yaml\n env_file:\n - ${ENV_FILE:-.env}\n ``` \n - Then in shell you can do: \n ```bash\n ENV_FILE=.env.local docker compose up -d mem0\n ``` \n\n---\n\n### ✅ Corrected `neo4j` + `mem0` services\n\n```yaml\n neo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n environment:\n - NEO4J_AUTH=neo4j/mem0graph\n - NEO4J_PLUGINS=[\"apoc\"]\n - NEO4J_apoc_export_file_enabled=true\n - NEO4J_apoc_import_file_enabled=true\n - NEO4J_apoc_import_file_use__neo4j__config=true\n volumes:\n - neo4j_data:/data\n ports:\n - \"7474:7474\" # Web UI\n - \"7687:7687\" # Bolt\n healthcheck:\n test: [\"CMD\", \"cypher-shell\", \"-u\", \"neo4j\", \"-p\", \"mem0graph\", \"RETURN 1\"]\n interval: 10s\n timeout: 5s\n retries: 10\n networks:\n - lyranet\n\n mem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n depends_on:\n postgres:\n condition: service_healthy\n neo4j:\n condition: service_healthy\n env_file:\n - ${ENV_FILE:-.env} # 👈 swap .env / .env.local easily\n networks:\n - lyranet\n```\n\n---\n\n### 🚀 Workflow with this setup\n\n- Default (OpenAI): \n ```bash\n docker compose up -d\n ```\n\n- With Ollama profile: \n ```bash\n ENV_FILE=.env.local docker compose up -d\n ```\n\n---\n\n👉 Do you want me to also give you the **matching `.env` and `.env.local` templates** with the Neo4j creds in place so Mem0 actually connects cleanly?" }, { "role": "user", "content": "im skipping the .env stuff for mem0 and just using the old environment stuff FOR NOW. does this look right?\n\n environment:\n - POSTGRES_HOST: postgres\n - POSTGRES_PORT: 5432\n - POSTGRES_DB: mem0\n - POSTGRES_USER: mem0\n - POSTGRES_PASSWORD: mem0pass\n - OPENAI_API_KEY: ${openai_api_key}\n - HISTORY_DB_PATH: /app/history/history.db" }, { "role": "assistant", "content": "Almost ✅ — you’re super close, but there’s a small YAML formatting issue. \n\nWhen you use the `environment:` section in `docker compose`, you have **two valid styles**: \n\n---\n\n### **Style 1: key=value (preferred when using lists)**\n\n```yaml\nenvironment:\n - POSTGRES_HOST=postgres\n - POSTGRES_PORT=5432\n - POSTGRES_DB=mem0\n - POSTGRES_USER=mem0\n - POSTGRES_PASSWORD=mem0pass\n - OPENAI_API_KEY=${OPENAI_API_KEY}\n - HISTORY_DB_PATH=/app/history/history.db\n```\n\nNotice it’s `KEY=value`, not `KEY: value` when you’re inside a dash list. \n\n---\n\n### **Style 2: dictionary style**\n\n```yaml\nenvironment:\n POSTGRES_HOST: postgres\n POSTGRES_PORT: 5432\n POSTGRES_DB: mem0\n POSTGRES_USER: mem0\n POSTGRES_PASSWORD: mem0pass\n OPENAI_API_KEY: ${OPENAI_API_KEY}\n HISTORY_DB_PATH: /app/history/history.db\n```\n\nBoth work — but you can’t mix them. Right now you had `- KEY: value` which is invalid YAML. \n\n---\n\n### ✅ Fixed version (list style)\n\n```yaml\nenvironment:\n - POSTGRES_HOST=postgres\n - POSTGRES_PORT=5432\n - POSTGRES_DB=mem0\n - POSTGRES_USER=mem0\n - POSTGRES_PASSWORD=mem0pass\n - OPENAI_API_KEY=${OPENAI_API_KEY}\n - HISTORY_DB_PATH=/app/history/history.db\n```\n\n---\n\n👉 Do you want me to check the **neo4j section** in your compose too and align its auth config so Mem0 definitely connects without the “connection refused” error?" }, { "role": "user", "content": "yes please" }, { "role": "assistant", "content": "Perfect 👍 let’s lock down **Neo4j + Mem0 auth** so they speak the same language. Right now your error was: \n\n```\nValueError: Could not connect to Neo4j database.\n```\n\nThat usually means either: \n- Neo4j wasn’t ready yet, or \n- Credentials don’t match between `neo4j` service and `mem0` config. \n\n---\n\n### ✅ Recommended Neo4j service\n\n```yaml\nneo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n environment:\n - NEO4J_AUTH=neo4j/mem0graph # 👈 username: neo4j, password: mem0graph\n - NEO4J_PLUGINS=[\"apoc\"]\n - NEO4J_apoc_export_file_enabled=true\n - NEO4J_apoc_import_file_enabled=true\n - NEO4J_apoc_import_file_use__neo4j__config=true\n volumes:\n - neo4j_data:/data\n ports:\n - \"7474:7474\" # Web UI\n - \"7687:7687\" # Bolt protocol (Mem0 connects here)\n healthcheck:\n test: [\"CMD\", \"cypher-shell\", \"-u\", \"neo4j\", \"-p\", \"mem0graph\", \"RETURN 1\"]\n interval: 10s\n timeout: 5s\n retries: 10\n networks:\n - lyranet\n```\n\n---\n\n### ✅ Matching Mem0 environment \n\n```yaml\nmem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n depends_on:\n postgres:\n condition: service_healthy\n neo4j:\n condition: service_healthy\n environment:\n - POSTGRES_HOST=postgres\n - POSTGRES_PORT=5432\n - POSTGRES_DB=mem0\n - POSTGRES_USER=mem0\n - POSTGRES_PASSWORD=mem0pass\n - OPENAI_API_KEY=${OPENAI_API_KEY}\n - HISTORY_DB_PATH=/app/history/history.db\n - NEO4J_URL=bolt://neo4j:7687\n - NEO4J_USERNAME=neo4j\n - NEO4J_PASSWORD=mem0graph\n networks:\n - lyranet\n```\n\n---\n\n### 🚀 With this setup\n- Neo4j runs with username `neo4j` and password `mem0graph`. \n- Healthcheck uses those same creds. \n- Mem0 connects to `bolt://neo4j:7687` with those creds. \n\nSo the “connection refused” error should disappear once Neo4j finishes starting. \n\n---\n\n👉 Do you want me to also give you the **curl command to sanity-check Neo4j** directly (before Mem0 starts), so you can confirm the DB is live and accepting connections?" }, { "role": "user", "content": "neo4j | Installing Plugin 'apoc' from /var/lib/neo4j/labs/apoc-*-core.jar to /var/lib/neo4j/plugins/apoc.jar\nneo4j | Applying default values for plugin apoc to neo4j.conf\nneo4j | Skipping dbms.security.procedures.unrestricted for plugin apoc because it is already set.\nneo4j | You may need to add apoc.* to the dbms.security.procedures.unrestricted setting in your configuration file.\nrelay |\nrelay | > lyra-relay@0.1.0 start\nrelay | > node server.js\nrelay |\nrelay | Relay listening on port 7078\nmem0 | 2025-09-16 08:18:53,493 - INFO - Using psycopg2 with ThreadedConnectionPool for PostgreSQL connections\nneo4j | Changed password for user 'neo4j'. IMPORTANT: this change will only take effect if performed before the database is started for the first time.\nmem0 | Traceback (most recent call last):\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_async_compat/network/_bolt_socket.py\", line 409, in _connect_secure\nmem0 | s.connect(resolved_address)\nmem0 | ConnectionRefusedError: [Errno 111] Connection refused\nmem0 |\nmem0 | The above exception was the direct cause of the following exception:\nmem0 |\nmem0 | Traceback (most recent call last):\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/io/_bolt_socket.py\", line 328, in connect\nmem0 | s = cls._connect_secure(\nmem0 | ^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_async_compat/network/_bolt_socket.py\", line 426, in _connect_secure\nmem0 | raise ServiceUnavailable(\nmem0 | neo4j.exceptions.ServiceUnavailable: Failed to establish connection to ResolvedIPv4Address(('172.18.0.4', 7687)) (reason [Errno 111] Connection refused)\nmem0 |\nmem0 | The above exception was the direct cause of the following exception:\nmem0 |\nmem0 | Traceback (most recent call last):\nmem0 | File \"/usr/local/lib/python3.12/site-packages/langchain_neo4j/graphs/neo4j_graph.py\", line 153, in __init__\nmem0 | self._driver.verify_connectivity()\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/driver.py\", line 1090, in verify_connectivity\nmem0 | self._get_server_info(session_config)\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/driver.py\", line 1305, in _get_server_info\nmem0 | return session._get_server_info()\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/work/session.py\", line 183, in _get_server_info\nmem0 | self._connect(\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/work/session.py\", line 136, in _connect\nmem0 | super()._connect(\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/work/workspace.py\", line 199, in _connect\nmem0 | self._connection = self._pool.acquire(**acquire_kwargs_)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/io/_pool.py\", line 676, in acquire\nmem0 | return self._acquire(\nmem0 | ^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/io/_pool.py\", line 417, in _acquire\nmem0 | return connection_creator()\nmem0 | ^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/io/_pool.py\", line 230, in connection_creator\nmem0 | connection = self.opener(\nmem0 | ^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/io/_pool.py\", line 637, in opener\nmem0 | return Bolt.open(\nmem0 | ^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/io/_bolt.py\", line 368, in open\nmem0 | s, protocol_version, handshake, data = BoltSocket.connect(\nmem0 | ^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/neo4j/_sync/io/_bolt_socket.py\", line 376, in connect\nmem0 | raise ServiceUnavailable(\nmem0 | neo4j.exceptions.ServiceUnavailable: Couldn't connect to neo4j:7687 (resolved to ('172.18.0.4:7687',)):\nmem0 | Failed to establish connection to ResolvedIPv4Address(('172.18.0.4', 7687)) (reason [Errno 111] Connection refused)\nmem0 |\nmem0 | During handling of the above exception, another exception occurred:\nmem0 |\nmem0 | Traceback (most recent call last):\nmem0 | File \"/usr/local/bin/uvicorn\", line 8, in \nmem0 | sys.exit(main())\nmem0 | ^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/click/core.py\", line 1442, in __call__\nmem0 | return self.main(*args, **kwargs)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/click/core.py\", line 1363, in main\nmem0 | rv = self.invoke(ctx)\nmem0 | ^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/click/core.py\", line 1226, in invoke\nmem0 | return ctx.invoke(self.callback, **ctx.params)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/click/core.py\", line 794, in invoke\nmem0 | return callback(*args, **kwargs)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/main.py\", line 413, in main\nmem0 | run(\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/main.py\", line 580, in run\nmem0 | server.run()\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/server.py\", line 67, in run\nmem0 | return asyncio.run(self.serve(sockets=sockets))\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/asyncio/runners.py\", line 195, in run\nmem0 | return runner.run(main)\nmem0 | ^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/asyncio/runners.py\", line 118, in run\nmem0 | return self._loop.run_until_complete(task)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/asyncio/base_events.py\", line 691, in run_until_complete\nmem0 | return future.result()\nmem0 | ^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/server.py\", line 71, in serve\nmem0 | await self._serve(sockets)\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/server.py\", line 78, in _serve\nmem0 | config.load()\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/config.py\", line 436, in load\nmem0 | self.loaded_app = import_from_string(self.app)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/uvicorn/importer.py\", line 19, in import_from_string\nmem0 | module = importlib.import_module(module_str)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/importlib/__init__.py\", line 90, in import_module\nmem0 | return _bootstrap._gcd_import(name[level:], package, level)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"\", line 1387, in _gcd_import\nmem0 | File \"\", line 1360, in _find_and_load\nmem0 | File \"\", line 1331, in _find_and_load_unlocked\nmem0 | File \"\", line 935, in _load_unlocked\nmem0 | File \"\", line 999, in exec_module\nmem0 | File \"\", line 488, in _call_with_frames_removed\nmem0 | File \"/app/server/main.py\", line 59, in \nmem0 | MEMORY_INSTANCE = Memory.from_config(DEFAULT_CONFIG)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/app/mem0/memory/main.py\", line 173, in from_config\nmem0 | return cls(config)\nmem0 | ^^^^^^^^^^^\nmem0 | File \"/app/mem0/memory/main.py\", line 149, in __init__\nmem0 | self.graph = GraphStoreFactory.create(provider, self.config)\nmem0 | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\nmem0 | File \"/app/mem0/utils/factory.py\", line 218, in create\nmem0 | return GraphClass(config)\nmem0 | ^^^^^^^^^^^^^^^^^^\nmem0 | File \"/app/mem0/memory/graph_memory.py\", line 32, in __init__\nmem0 | self.graph = Neo4jGraph(\nmem0 | ^^^^^^^^^^^\nmem0 | File \"/usr/local/lib/python3.12/site-packages/langchain_neo4j/graphs/neo4j_graph.py\", line 160, in __init__\nmem0 | raise ValueError(\nmem0 | ValueError: Could not connect to Neo4j database. Please ensure that the url is correct\nmem0 exited with code 1\nneo4j | 2025-09-16 08:18:55.091+0000 INFO Logging config in use: File '/var/lib/neo4j/conf/user-logs.xml'\nneo4j | 2025-09-16 08:18:55.100+0000 INFO Starting...\nneo4j | 2025-09-16 08:18:55.693+0000 INFO This instance is ServerId{806df589} (806df589-d38f-4535-a010-f41386d97e7d)\nneo4j | 2025-09-16 08:18:56.322+0000 INFO ======== Neo4j 5.26.4 ========\nmem0 exited with code 1\nneo4j | 2025-09-16 08:18:57.939+0000 INFO Anonymous Usage Data is being sent to Neo4j, see https://neo4j.com/docs/usage-data/\nneo4j | 2025-09-16 08:18:57.965+0000 INFO Bolt enabled on 0.0.0.0:7687.\nneo4j | 2025-09-16 08:18:58.388+0000 INFO HTTP enabled on 0.0.0.0:7474.\nneo4j | 2025-09-16 08:18:58.389+0000 INFO Remote interface available at http://localhost:7474/\nneo4j | 2025-09-16 08:18:58.391+0000 INFO id: B07CB08F635978EEAFD233A0863C28AD884A85846471FBCF43283A358E0448BF\nneo4j | 2025-09-16 08:18:58.391+0000 INFO name: system\nneo4j | 2025-09-16 08:18:58.391+0000 INFO creationDate: 2025-09-14T21:10:41.567Z\nneo4j | 2025-09-16 08:18:58.392+0000 INFO Started.\n\nStill doing this" }, { "role": "assistant", "content": "Thanks for the detailed logs 🙏 — they confirm exactly what’s happening: \n\n- **Mem0 dies immediately** because it tries to connect to Neo4j on port `7687` *before Neo4j is fully ready*. \n- In your logs: \n - Mem0 crashes at `08:18:53` \n - Neo4j only enables Bolt (`7687`) at `08:18:57.939` \n\nSo Mem0 gave up 4 seconds too early. \n\n---\n\n### ✅ Fix Options\n\n#### 1. Add proper **healthcheck + depends_on condition**\nMake Mem0 wait until Neo4j is *healthy* instead of just “started”. \n\n```yaml\nneo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n environment:\n - NEO4J_AUTH=neo4j/mem0graph\n ports:\n - \"7474:7474\"\n - \"7687:7687\"\n healthcheck:\n test: [\"CMD\", \"cypher-shell\", \"-u\", \"neo4j\", \"-p\", \"mem0graph\", \"RETURN 1\"]\n interval: 10s\n timeout: 5s\n retries: 10\n networks:\n - lyranet\n\nmem0:\n ...\n depends_on:\n postgres:\n condition: service_healthy\n neo4j:\n condition: service_healthy\n```\n\n⚠️ Note: this requires `cypher-shell` inside the Neo4j image, which is included in official `neo4j:5.x`. \n\n---\n\n#### 2. Give Mem0 a retry loop\nIf Mem0 doesn’t have a built-in retry, you can wrap its command so it waits for Neo4j: \n\n```yaml\ncommand: >\n sh -c \"\n until nc -z neo4j 7687;\n do echo '⏳ waiting for neo4j...'; sleep 5; done;\n uvicorn main:app --host 0.0.0.0 --port 8080\n \"\n```\n\nThis keeps Mem0 in a holding pattern until the `neo4j` container is actually listening. \n\n---\n\n#### 3. (Optional) Delay restart with restart policy\nSince you already have `restart: unless-stopped`, Mem0 *should* restart after crashing. But it dies before Neo4j is up, so you end up in a crash loop. Adding the retry logic (Option 2) is the cleanest way. \n\n---\n\n### 🚀 Recommended next step\nAdd **Option 2 (retry loop)** to Mem0 so it doesn’t crash if Neo4j takes a few seconds longer. \n\n---\n\n👉 Do you want me to rewrite your **Mem0 service block** with the retry wrapper so you can copy-paste and test right away?" }, { "role": "user", "content": "oh crud the docker-compose reset its self. Isnt there a way to do docker-compose.override.yml, so i can try stuff with docker compose before i actually implement?" }, { "role": "assistant", "content": "Exactly 👍 — you don’t need to keep hacking your main `docker-compose.yml`. Docker Compose supports a built-in **override system**. \n\n---\n\n### 🧩 How overrides work\n- By default, Compose loads **two files** if they exist: \n - `docker-compose.yml` \n - `docker-compose.override.yml` \n\n- It **merges them** (override wins if both define the same service or setting). \n\n- You can also explicitly specify multiple files: \n ```bash\n docker compose -f docker-compose.yml -f docker-compose.override.yml up -d\n ```\n\n---\n\n### ✅ Example: add retry logic only in override\nKeep your `docker-compose.yml` clean. Create a **`docker-compose.override.yml`** with: \n\n```yaml\nservices:\n mem0:\n command: >\n sh -c \"\n until nc -z neo4j 7687;\n do echo '⏳ waiting for neo4j...'; sleep 5; done;\n uvicorn main:app --host 0.0.0.0 --port 8080\n \"\n```\n\nNow when you run `docker compose up -d`, Compose will apply this override automatically. \n\n---\n\n### ✅ Example: experiment with env vars in override\n```yaml\nservices:\n mem0:\n environment:\n - EMBEDDER=ollama\n - EMBEDDER_MODEL=nomic-embed-text\n - OLLAMA_URL=http://10.0.0.3:11434\n```\n\nThat way you can test Ollama embeddings without touching the base file. \n\n---\n\n### ⚡ Workflow\n- Edit `docker-compose.override.yml` → test stuff. \n- If it works, move the changes into `docker-compose.yml` permanently. \n- If not, just delete the override file and your stack goes back to “clean” defaults. \n\n---\n\n👉 Do you want me to draft you a **docker-compose.override.yml** that fixes the Neo4j timing issue *and* lets you toggle between OpenAI ↔ Ollama embeddings without touching the main file?" }, { "role": "user", "content": "man i forgot what we were doing lol" }, { "role": "assistant", "content": "😅 Totally fair — we’ve been bouncing between a lot of moving parts (Relay, Mem0, Neo4j, envs, embeddings). Let me rewind and drop a quick **“you are here” recap**:\n\n---\n\n### 🧠 Project: Lyra Core MVP\n- Relay ✅ working (chatting via browser, memory injection, persona).\n- Mem0 ✅ working, but you noticed **slow memory ops** → we swapped to `text-embedding-3-small` and speed improved.\n- Goal 🥅: make Mem0 run with either **OpenAI embeddings** (default) or **Ollama embeddings** (3090 rig).\n\n---\n\n### 🚧 Current blocker\n- Mem0 is crashing because it tries to connect to **Neo4j** before Neo4j is ready. \n- Logs show: Mem0 dies at `08:18:53`, but Neo4j doesn’t open Bolt (7687) until `08:18:57`. \n- → Result: `ServiceUnavailable: Couldn’t connect to neo4j:7687`.\n\n---\n\n### 💡 Solutions we discussed\n1. **Add healthchecks + depends_on (healthy)** \n Makes Mem0 wait for Neo4j to pass a `cypher-shell` test.\n2. **Wrap Mem0 command with retry loop** \n e.g. `until nc -z neo4j 7687; do sleep 5; done; uvicorn …` \n → Keeps Mem0 alive until Neo4j is actually ready.\n3. **Use docker-compose.override.yml** \n Safer way to test tweaks without editing your base `docker-compose.yml`.\n\n---\n\n### 🗺️ Where you left off\nYou asked: *“isn’t there a way to do docker-compose.override.yml so I can try stuff before implementing?”* → Yes ✅ we can drop an override file to test retry logic or embedding changes.\n\n---\n\n👉 Question for you: \nDo you want to tackle **Neo4j timing issue first** (so Mem0 stops crashing), or set up the **override.yml** so you can experiment with both Neo4j fix + embedding swaps without touching your main config?" }, { "role": "user", "content": "can you show me what to revert so i can get back to the MVP we had before?" }, { "role": "assistant", "content": "Got it 👍 — let’s rewind you to the **last known-good MVP** you had running (Relay + Mem0 + Persona + Postgres, memory add/search worked, chatting via browser worked). At that point Neo4j was optional and Mem0 still booted. \n\n---\n\n### 🔑 What to revert\n\n1. **Mem0 service** \nGo back to the plain setup without Neo4j config or retry hacks. Just Postgres + OpenAI embeddings. \n\n```yaml\nmem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n depends_on:\n - postgres\n environment:\n - POSTGRES_HOST=postgres\n - POSTGRES_PORT=5432\n - POSTGRES_DB=mem0\n - POSTGRES_USER=mem0\n - POSTGRES_PASSWORD=mem0pass\n - OPENAI_API_KEY=${OPENAI_API_KEY}\n - HISTORY_DB_PATH=/app/history/history.db\n - EMBEDDER=openai\n - EMBEDDER_MODEL=text-embedding-3-small\n networks:\n - lyranet\n```\n\n---\n\n2. **Neo4j service** \nIf you don’t need it yet, comment it out entirely so it doesn’t crash Mem0. Just remove (or comment) the whole `neo4j:` block from `docker-compose.yml`. \n\n---\n\n3. **Relay service** \nLeave as it was (Relay → Mem0 → Persona → LLM). Nothing fancy needed here. \n\n---\n\n4. **Persona-sidecar & Postgres** \nLeave those as-is. They were stable already. \n\n---\n\n### 🚀 Reset + Restart\n\n1. Stop all containers: \n```bash\ndocker compose down\n```\n\n2. Rebuild cleanly: \n```bash\ndocker compose build --no-cache\n```\n\n3. Bring up the MVP again: \n```bash\ndocker compose up -d\n```\n\n---\n\n### ✅ Sanity check\n- Test Mem0: \n```bash\ncurl -s -X POST \"http://localhost:7077/memories\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"user_id\":\"Brian\",\"messages\":[{\"role\":\"user\",\"content\":\"test message\"}],\"version\":\"v2\"}'\n```\n\n- Test Relay via browser UI: you should see chat + memory injection like before. \n\n---\n\n👉 Want me to write you a **docker-compose.override.yml** that you can keep on the side for experimenting with Neo4j + Ollama, while your base `docker-compose.yml` stays on the working MVP?" }, { "role": "user", "content": "were we going to put those enviroment things in the .env file? or should i keep it baked into the docker-compose?" }, { "role": "assistant", "content": "Good catch — we’ve bounced back and forth on this. Let me lay out the trade-offs so you can choose: \n\n---\n\n### 🔧 **Option A — baked into `docker-compose.yml`**\n```yaml\nenvironment:\n - POSTGRES_HOST=postgres\n - POSTGRES_PORT=5432\n - POSTGRES_DB=mem0\n - POSTGRES_USER=mem0\n - POSTGRES_PASSWORD=mem0pass\n - OPENAI_API_KEY=${OPENAI_API_KEY}\n - HISTORY_DB_PATH=/app/history/history.db\n - EMBEDDER=openai\n - EMBEDDER_MODEL=text-embedding-3-small\n```\n\n✅ Pros: \n- Dead simple — everything in one file. \n- No risk of `.env` not being picked up. \n\n❌ Cons: \n- Harder to switch configs (OpenAI ↔ Ollama). \n- You’ll end up editing the compose file whenever you experiment. \n\n---\n\n### 🔧 **Option B — put in `.env` file** \n`.env`:\n```env\nPOSTGRES_HOST=postgres\nPOSTGRES_PORT=5432\nPOSTGRES_DB=mem0\nPOSTGRES_USER=mem0\nPOSTGRES_PASSWORD=mem0pass\nHISTORY_DB_PATH=/app/history/history.db\n\n# embeddings\nEMBEDDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-xxxx\n```\n\n`docker-compose.yml`:\n```yaml\nenv_file:\n - .env\n```\n\n✅ Pros: \n- Easy to maintain multiple profiles (`.env`, `.env.local`, `.env.openai`). \n- Cleaner compose file. \n- You can swap providers without touching YAML: \n ```bash\n docker compose --env-file .env.local up -d\n ```\n\n❌ Cons: \n- Another file to manage. \n- If you forget to pass `--env-file`, defaults back to `.env`. \n\n---\n\n### 🧠 Where you were\nYou originally had things baked into `docker-compose.yml`. Then we tried moving to `.env` so you could flip configs easily. \n\n---\n\n### 🚀 Recommendation (to get MVP stable again)\n- For now: **bake envs into `docker-compose.yml`** (Option A). \n- Once Neo4j + Ollama are stable → switch to `.env` so you can experiment faster. \n\n---\n\n👉 Do you want me to hand you a **clean MVP `docker-compose.yml` block** (Relay + Mem0 + Persona + Postgres, env baked in) so you can copy-paste and get right back to the working baseline?" }, { "role": "user", "content": "\n\nservices:\n\n relay:\n build:\n context: ./relay\n container_name: relay\n ports:\n - \"7078:7078\"\n env_file:\n - .env\n networks:\n - lyranet\n depends_on:\n - mem0\n - persona-sidecar\n\n #Personality Sidecar\n persona-sidecar:\n build:\n context: ./persona-sidecar\n container_name: persona-sidecar\n ports:\n - \"7080:7080\"\n networks:\n - lyranet\n volumes:\n - ./persona-sidecar/personas.json:/app/personas.json:rw\n restart: unless-stopped\n\n\n postgres:\n image: ankane/pgvector:v0.5.1\n container_name: postgres\n restart: unless-stopped\n shm_size: \"128mb\"\n environment:\n POSTGRES_USER: mem0\n POSTGRES_PASSWORD: mem0pass\n POSTGRES_DB: mem0\n volumes:\n - postgres_data:/var/lib/postgresql/data\n ports:\n - \"5432:5432\"\n healthcheck:\n test: [\"CMD\", \"pg_isready\", \"-q\", \"-d\", \"mem0\", \"-U\", \"mem0\"]\n interval: 5s\n timeout: 5s\n retries: 5\n networks:\n - lyranet\n\n neo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n environment:\n - NEO4J_AUTH=neo4j/mem0graph\n - NEO4J_PLUGINS=[\"apoc\"]\n - NEO4J_apoc_export_file_enabled=true\n - NEO4J_apoc_import_file_enabled=true\n - NEO4J_apoc_import_file_use__neo4j__config=true\n volumes:\n - neo4j_data:/data\n ports:\n - \"7474:7474\" # Web UI\n - \"7687:7687\" # Bolt\n healthcheck:\n test: wget http://localhost:7474 || exit 1\n interval: 10s\n timeout: 10s\n retries: 10\n networks:\n - lyranet\n\n mem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n depends_on:\n - postgres\n - neo4j\n environment:\n POSTGRES_HOST: postgres\n POSTGRES_PORT: 5432\n POSTGRES_DB: mem0\n POSTGRES_USER: mem0\n POSTGRES_PASSWORD: mem0pass\n OPENAI_API_KEY: ${OPENAI_API_KEY}\n HISTORY_DB_PATH: /app/history/history.db\n networks:\n - lyranet\n\nvolumes:\n postgres_data:\n neo4j_data:\n mem0_data:\n\n\n\n\n\n\n\n\n\n\n\n#<---Stuff needs to be added before this -->\nnetworks:\n lyranet:\n driver: bridge\nthis is what i have now" }, { "role": "assistant", "content": "Thanks for pasting it 🙌 — this is very close to a stable MVP, but let me call out the details that are going to matter: \n\n---\n\n### 🔎 Issues in this file\n\n1. **Relay is using `env_file: - .env`** \n → But Mem0 has its env baked inline. That’s fine if you want Relay to use `.env` for only *its* vars (like `MEM0_URL`, `PERSONA_URL`, `DEBUG_PROMPT`). Just be aware they’re not consistent right now. \n\n2. **Mem0 `environment` block syntax** \n Right now you’ve got dictionary style: \n ```yaml\n environment:\n POSTGRES_HOST: postgres\n POSTGRES_PORT: 5432\n ...\n ``` \n ✅ That’s valid YAML. Just make sure your earlier version with `- POSTGRES_HOST: postgres` is gone — that was invalid. \n\n3. **Neo4j healthcheck** \n You’re using: \n ```yaml\n healthcheck:\n test: wget http://localhost:7474 || exit 1\n ``` \n That only checks the HTTP UI (7474), not whether the Bolt port (7687) is actually ready for Mem0. It’ll let Mem0 start too early. \n\n → Better would be: \n ```yaml\n healthcheck:\n test: [\"CMD-SHELL\", \"cypher-shell -u neo4j -p mem0graph 'RETURN 1' || exit 1\"]\n interval: 10s\n timeout: 10s\n retries: 10\n ``` \n That ensures the DB itself is live. \n\n4. **`depends_on` in Mem0** \n You’ve got: \n ```yaml\n depends_on:\n - postgres\n - neo4j\n ``` \n → That only waits until containers start, not until they’re *healthy*. \n If you want to block Mem0 until Postgres + Neo4j healthchecks pass, it should be: \n ```yaml\n depends_on:\n postgres:\n condition: service_healthy\n neo4j:\n condition: service_healthy\n ```\n\n---\n\n### ✅ Recommended changes\n\n```yaml\nneo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n environment:\n - NEO4J_AUTH=neo4j/mem0graph\n - NEO4J_PLUGINS=[\"apoc\"]\n - NEO4J_apoc_export_file_enabled=true\n - NEO4J_apoc_import_file_enabled=true\n - NEO4J_apoc_import_file_use__neo4j__config=true\n volumes:\n - neo4j_data:/data\n ports:\n - \"7474:7474\" # Web UI\n - \"7687:7687\" # Bolt\n healthcheck:\n test: [\"CMD-SHELL\", \"cypher-shell -u neo4j -p mem0graph 'RETURN 1' || exit 1\"]\n interval: 10s\n timeout: 10s\n retries: 10\n networks:\n - lyranet\n\nmem0:\n ...\n depends_on:\n postgres:\n condition: service_healthy\n neo4j:\n condition: service_healthy\n environment:\n POSTGRES_HOST: postgres\n POSTGRES_PORT: 5432\n POSTGRES_DB: mem0\n POSTGRES_USER: mem0\n POSTGRES_PASSWORD: mem0pass\n OPENAI_API_KEY: ${OPENAI_API_KEY}\n HISTORY_DB_PATH: /app/history/history.db\n```\n\n---\n\n### 🚀 Next step\nIf you apply those two tweaks (healthcheck + depends_on conditions), Mem0 should stop dying on startup before Neo4j is ready. \n\n---\n\n👉 Do you want me to hand you a **minimal “MVP safe” version** (Relay + Mem0 + Persona + Postgres only, no Neo4j) as a fallback config so you can always roll back to working baseline?" }, { "role": "user", "content": "so for environment variables is it supposed to be \"POSTGRES_DB: mem0\" or \"postgres_db=mem0\"" }, { "role": "assistant", "content": "Good question 👌 — both are valid **but they are two different YAML syntaxes**. Let me break it down:\n\n---\n\n### ✅ Style 1: Dictionary (your current `POSTGRES_DB: mem0`) \n```yaml\nenvironment:\n POSTGRES_HOST: postgres\n POSTGRES_PORT: 5432\n POSTGRES_DB: mem0\n POSTGRES_USER: mem0\n POSTGRES_PASSWORD: mem0pass\n```\n\n- Each line is `KEY: value` \n- Cleaner if you’ve got a lot of vars \n- YAML parser turns this into environment vars automatically \n\n---\n\n### ✅ Style 2: List (`postgres_db=mem0`) \n```yaml\nenvironment:\n - POSTGRES_HOST=postgres\n - POSTGRES_PORT=5432\n - POSTGRES_DB=mem0\n - POSTGRES_USER=mem0\n - POSTGRES_PASSWORD=mem0pass\n```\n\n- Each line is a string in `KEY=value` format \n- Closer to what you’d type in bash \n- A little noisier but sometimes easier to copy/paste \n\n---\n\n### ❌ What *doesn’t* work \nThis is invalid because it mixes both syntaxes: \n```yaml\nenvironment:\n - POSTGRES_DB: mem0 # 🚫 not valid\n```\n\n---\n\n### ⚡ Recommendation\nStick with **dictionary style** (`POSTGRES_DB: mem0`) since that’s what you already have. It’s cleaner, and Compose handles it fine. \n\n---\n\n👉 Do you want me to go through your whole `docker-compose.yml` and normalize all `environment:` blocks to dictionary style for consistency?" }, { "role": "user", "content": "Yeah can you do that?" }, { "role": "assistant", "content": "Perfect 👍 — let’s normalize everything in your `docker-compose.yml` so that **all `environment:` blocks use dictionary style** (`KEY: value`). That way it’s consistent, easy to read, and avoids YAML gotchas. \n\nHere’s the cleaned-up version of your file (MVP + Neo4j, but you can comment Neo4j out if you want the simpler baseline): \n\n---\n\n```yaml\nservices:\n\n relay:\n build:\n context: ./relay\n container_name: relay\n ports:\n - \"7078:7078\"\n env_file:\n - .env\n networks:\n - lyranet\n depends_on:\n - mem0\n - persona-sidecar\n\n # Personality Sidecar\n persona-sidecar:\n build:\n context: ./persona-sidecar\n container_name: persona-sidecar\n ports:\n - \"7080:7080\"\n networks:\n - lyranet\n volumes:\n - ./persona-sidecar/personas.json:/app/personas.json:rw\n restart: unless-stopped\n\n postgres:\n image: ankane/pgvector:v0.5.1\n container_name: postgres\n restart: unless-stopped\n shm_size: \"128mb\"\n environment:\n POSTGRES_USER: mem0\n POSTGRES_PASSWORD: mem0pass\n POSTGRES_DB: mem0\n volumes:\n - postgres_data:/var/lib/postgresql/data\n ports:\n - \"5432:5432\"\n healthcheck:\n test: [\"CMD\", \"pg_isready\", \"-q\", \"-d\", \"mem0\", \"-U\", \"mem0\"]\n interval: 5s\n timeout: 5s\n retries: 5\n networks:\n - lyranet\n\n neo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n environment:\n NEO4J_AUTH: neo4j/mem0graph\n NEO4J_PLUGINS: '[\"apoc\"]'\n NEO4J_apoc_export_file_enabled: \"true\"\n NEO4J_apoc_import_file_enabled: \"true\"\n NEO4J_apoc_import_file_use__neo4j__config: \"true\"\n volumes:\n - neo4j_data:/data\n ports:\n - \"7474:7474\" # Web UI\n - \"7687:7687\" # Bolt\n healthcheck:\n test: [\"CMD-SHELL\", \"cypher-shell -u neo4j -p mem0graph 'RETURN 1' || exit 1\"]\n interval: 10s\n timeout: 10s\n retries: 10\n networks:\n - lyranet\n\n mem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n depends_on:\n postgres:\n condition: service_healthy\n neo4j:\n condition: service_healthy\n environment:\n POSTGRES_HOST: postgres\n POSTGRES_PORT: 5432\n POSTGRES_DB: mem0\n POSTGRES_USER: mem0\n POSTGRES_PASSWORD: mem0pass\n OPENAI_API_KEY: ${OPENAI_API_KEY}\n HISTORY_DB_PATH: /app/history/history.db\n networks:\n - lyranet\n\nvolumes:\n postgres_data:\n neo4j_data:\n mem0_data:\n\nnetworks:\n lyranet:\n driver: bridge\n```\n\n---\n\n### 🔑 What changed\n- All `environment:` blocks use **dictionary style** (`KEY: value`). \n- Quoted JSON-y vars (like `NEO4J_PLUGINS`) so YAML won’t choke. \n- Healthcheck for Neo4j upgraded to `cypher-shell` test. \n- `depends_on` for Mem0 updated to wait until Postgres + Neo4j are **healthy**. \n\n---\n\n👉 Do you want me to also prep you a **fallback “MVP-lite” compose file** (Relay + Persona + Mem0 + Postgres only, no Neo4j) so you can roll back instantly if Neo4j keeps being a pain?" }, { "role": "user", "content": "i guess lets see fi this runs" }, { "role": "assistant", "content": "👍 Good plan — here’s the safest way to test this updated config cleanly:\n\n---\n\n### 🧹 1. Stop everything\n```bash\ndocker compose down\n```\n\nIf you want to nuke volumes too (be careful, that wipes Postgres/Neo4j data):\n```bash\ndocker compose down --volumes --remove-orphans\n```\n\n---\n\n### 🏗️ 2. Rebuild from scratch\n```bash\ndocker compose build --no-cache\n```\n\n---\n\n### 🚀 3. Start all services\n```bash\ndocker compose up -d\n```\n\n---\n\n### 🔍 4. Check health\n- Verify containers are running:\n```bash\ndocker compose ps\n```\n\n- Tail logs if Mem0 crashes:\n```bash\ndocker compose logs -f mem0\n```\nand\n```bash\ndocker compose logs -f neo4j\n```\n\n---\n\n### ✅ Expected\n- **Postgres** → should hit healthy in ~2–5s. \n- **Neo4j** → might take 10–20s before Bolt (`7687`) opens. Healthcheck should delay Mem0 until then. \n- **Mem0** → should now connect without throwing `ServiceUnavailable`. \n- **Relay** → should boot and say `Relay listening on port 7078`. \n\n---\n\n👉 Do you want me to also drop you a quick **curl test checklist** (Mem0 `/memories`, Mem0 `/search`, Relay `/v1/chat/completions`) so you can confirm the whole chain is alive right after it spins up?" }, { "role": "user", "content": "it looks like its working fine. I guess i can try to chat with it now? I forget how to open the chat webui lol" }, { "role": "assistant", "content": "Nice 🎉 glad it’s booting clean — that’s a good sign Neo4j isn’t tripping Mem0 anymore. \n\nFor your chat UI, we set up a **super simple static page** that talks to the Relay API. Here’s how to use it again:\n\n---\n\n### 🧩 Where it lives\n- You dropped an `index.html` file (the chat UI) into your **Relay container** build context (`./relay/ui/index.html`). \n- Relay just serves API (`7078`), not static files, so you open the HTML file directly in your browser. \n\n---\n\n### 🚀 How to open it\n1. On your main machine, go to the folder where you saved the chat UI (`index.html`). \n2. Double-click it, or drag it into your browser. \n - It should load a page with a textbox + chat history. \n - The JS inside is hardcoded to point to your Relay API: \n ```js\n const API_URL = \"http://10.0.0.47:7078/v1/chat/completions\";\n ```\n - So make sure that IP (`10.0.0.47`) is the machine where Docker/Relay is running. \n\n3. Start chatting 🚀 \n\n---\n\n### 🧪 Quick sanity test (API directly)\nIf you want to make sure Relay is answering before UI: \n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"model\":\"gpt-4o-mini\",\"messages\":[{\"role\":\"user\",\"content\":\"hello Lyra\"}]}'\n```\n\nYou should see JSON with `assistant: hello!` in the reply. \n\n---\n\n👉 Do you want me to re-post the **ready-to-use `index.html` chat UI** here so you can confirm you’ve got the latest version, or are you already using the one we patched with the dropdown etc.?" }, { "role": "user", "content": "lol i cant remember a thing about where we left off" }, { "role": "assistant", "content": "😅 No worries — we’ve been in the weeds with a *lot* of moving parts. Let me give you a crisp rewind to the last stable checkpoint:\n\n---\n\n## 🧠 Lyra Core MVP Recap\n\n### ✅ What’s working right now\n- **Docker stack** is up (Relay + Mem0 + Persona-Sidecar + Postgres + Neo4j).\n- **Neo4j healthcheck + depends_on** fix means Mem0 no longer crashes at startup.\n- **Relay** is listening on `7078`.\n- **Mem0** responds on `7077` for `/memories` and `/search`.\n- **Persona-Sidecar** responds on `7080`.\n- You confirmed the stack boots clean without errors. 🎉\n\n---\n\n### 🖥️ Chat Web UI\n- We set up a **barebones static HTML chat UI** (`index.html`) that runs in your browser and points to:\n ```js\n const API_URL = \"http://10.0.0.47:7078/v1/chat/completions\";\n ```\n- You don’t need to serve it via Docker — just open the file in your browser. \n- That UI is your way to “chat with Lyra” through the Relay.\n\n---\n\n### 🧪 Testing flow\n1. **Direct API test (CLI):**\n ```bash\n curl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"model\":\"gpt-4o-mini\",\"messages\":[{\"role\":\"user\",\"content\":\"hello Lyra\"}]}'\n ```\n\n2. **UI test (Browser):**\n - Open `index.html` directly.\n - Make sure `API_URL` in the file points to the machine where Relay is running.\n - Send a test message like “hello Lyra”.\n\n---\n\n### 🔜 Next planned steps (where we paused)\n- Add UI dropdown to switch between **OpenAI** and **Ollama** backends.\n- Experiment with **Ollama embeddings** (`nomic-embed-text`) vs **OpenAI embeddings** (`text-embedding-3-small`) for Mem0.\n- Decide whether to move Mem0 envs fully into `.env` files or keep them inline for now.\n\n---\n\n👉 So right now, you should be able to **chat with Lyra from the web UI** again. \nDo you want me to drop the **latest `index.html` code** here so you don’t have to hunt for the file, and we can confirm it’s pointing at your Relay correctly?" }, { "role": "user", "content": "Oh yeah we were messing around with the .env stuff and it was getting confusing " }, { "role": "assistant", "content": "Exactly 👍 — the `.env` shuffle was where things started to spiral. Let’s clear it up:\n\n---\n\n## 🧩 Where the `.env` confusion came from\n\n### 1. **Relay**\n- Relay needs vars like:\n - `MEM0_URL=http://mem0:8080`\n - `PERSONA_URL=http://persona-sidecar:7080/current`\n - `OLLAMA_URL=http://10.0.0.3:11434`\n - `OPENAI_API_KEY=sk-xxxx`\n - `DEBUG_PROMPT=true`\n- You already had Relay set to `env_file: - .env`, so it expects those in a `.env` file.\n\n---\n\n### 2. **Mem0**\n- At first, Mem0’s env vars (Postgres creds, OpenAI key, embedder config) were hardcoded under `environment:` in `docker-compose.yml`.\n- Then we tried moving them into `.env` so you could swap providers easily (`.env`, `.env.local`, `.env.openai`).\n- That got messy because Mem0 wasn’t actually picking them up (since it was still using its own inline `environment:`).\n\n---\n\n### 3. **Postgres / Neo4j**\n- Their configs were straightforward and stable — no `.env` swapping needed there.\n\n---\n\n## ✅ Current recommended baseline\nTo keep MVP **simple and stable**:\n- **Relay:** keep `env_file: - .env`\n- **Mem0:** keep **inline environment block** (dictionary style). Don’t overcomplicate yet.\n- **Postgres + Neo4j:** leave as-is.\n\nThat way, only Relay uses `.env`, and Mem0 is hardcoded to OpenAI embeddings until you’re ready to experiment.\n\n---\n\n### Example Mem0 block (inline envs, stable):\n\n```yaml\nmem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n depends_on:\n postgres:\n condition: service_healthy\n neo4j:\n condition: service_healthy\n environment:\n POSTGRES_HOST: postgres\n POSTGRES_PORT: 5432\n POSTGRES_DB: mem0\n POSTGRES_USER: mem0\n POSTGRES_PASSWORD: mem0pass\n OPENAI_API_KEY: ${OPENAI_API_KEY}\n HISTORY_DB_PATH: /app/history/history.db\n EMBEDDER: openai\n EMBEDDER_MODEL: text-embedding-3-small\n networks:\n - lyranet\n```\n\n---\n\n⚡ This gives you:\n- Relay loads `.env` for its own URLs + API keys.\n- Mem0 is stable with OpenAI embeddings baked in.\n- No `.env.local` switching to worry about until you’re ready.\n\n---\n\n👉 Do you want me to prep a **“MVP-lite” compose file** (Relay + Persona + Mem0 + Postgres, no Neo4j) so you always have a known-good baseline you can fall back to?" }, { "role": "user", "content": "shit i cant even remember how to log in to the lyra VM lol" }, { "role": "assistant", "content": "Haha, totally fair — with all the container fiddling it’s easy to forget the entry point 😅. Let’s rewind to basics:\n\n---\n\n## 🔑 Logging back into the Lyra VM\n\n### If it’s a **local VM** (Proxmox, VirtualBox, VMware, etc.):\n- You’d connect with **SSH** from your desktop:\n ```bash\n ssh serversdown@\n ```\n Replace `` with the LAN address of the VM (e.g. `10.0.0.47`).\n\n- If you forgot the IP:\n - On Proxmox, check the **console view** in the web GUI.\n - Or run `ip a` from the VM’s console to see the assigned IP.\n\n---\n\n### If it’s a **cloud VM** (Linode, AWS, etc.):\n- SSH the same way:\n ```bash\n ssh serversdown@\n ```\n- You’ll need the private key you set up when provisioning, or the VM password.\n\n---\n\n### 📝 Default details (from what you used earlier):\n- **User:** `serversdown`\n- **Host:** `lyra-core` VM on your LAN\n- **LAN IP (from your earlier screenshots):** `10.0.0.47`\n- So the full command was likely:\n ```bash\n ssh serversdown@10.0.0.47\n ```\n\n---\n\n👉 Want me to give you a couple quick tricks to **rediscover the IP of the VM** from your main rig if you don’t remember where it’s hiding?" }, { "role": "user", "content": "okay that got it. Okay can you make me a prompt to send to a new chat to start working on the .env stuff" }, { "role": "assistant", "content": "Perfect — glad you’re back into the VM. 👍 \n\nHere’s a clean **seed prompt** you can paste into a new chat to focus just on the `.env` refactor work without dragging in all the extra noise from before:\n\n---\n\n## 🌱 Seed Prompt for `.env` Work\n\n```\nYou are my assistant helping me refactor the Lyra-Core docker-compose environment so it’s clean, modular, and flexible.\n\nCurrent setup:\n- Relay uses `.env` (MEM0_URL, PERSONA_URL, OLLAMA_URL, OPENAI_API_KEY, DEBUG_PROMPT).\n- Mem0 currently has inline environment vars in docker-compose (Postgres/Neo4j creds, OpenAI API key, EMBEDDER config).\n- Postgres and Neo4j are working fine as-is.\n- I want to be able to swap between multiple `.env` files (e.g., `.env`, `.env.local`, `.env.openai`) so I can quickly test different embeddings backends (OpenAI vs Ollama) without editing docker-compose directly.\n- MVP should stay simple and not break working setup.\n\nGoals for this session:\n1. Standardize which services pull from `.env` vs inline vars.\n2. Cleanly move Mem0’s configs (DB + embedding provider) into `.env` files.\n3. Make sure `docker compose --env-file` works properly.\n4. Keep a “safe fallback” MVP config (hardcoded inline envs) I can roll back to.\n5. Write test steps (`curl` or docker logs checks) to confirm which embedder Mem0 is actually using.\n\nRules:\n- Do not overcomplicate. Start with OpenAI embedder in `.env`, confirm it works, then add optional `.env.local` for Ollama.\n- Always show me the updated docker-compose service blocks and the matching `.env` contents.\n- Provide copy-pasteable test commands after each change.\n```\n\n---\n\n👉 Want me to also draft you the **first `.env` file** (OpenAI as default embedder) so you’ve got a head start?" }, { "role": "user", "content": "oh now im getting \"Error: failed to fetch when i try to talk to it through the web ui" }, { "role": "assistant", "content": "Got it — “Error: failed to fetch” in the browser UI usually means the browser can’t reach Relay, not that Relay or Mem0 is down. Let’s walk through the quick checks:\n\n---\n\n## 🔍 Debug checklist for `failed to fetch`\n\n### 1. Is Relay running?\nSSH into your VM and check:\n```bash\ndocker compose logs -f relay\n```\nYou should see:\n```\nRelay listening on port 7078\n```\n\n---\n\n### 2. Is the API reachable locally?\nRun on the VM:\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"model\":\"gpt-4o-mini\",\"messages\":[{\"role\":\"user\",\"content\":\"hello Lyra\"}]}'\n```\n- If you get a JSON reply → Relay is fine.\n- If not → we need to look at Relay logs.\n\n---\n\n### 3. Is the browser pointing at the right host?\nIn your `index.html`, make sure:\n```js\nconst API_URL = \"http://10.0.0.47:7078/v1/chat/completions\";\n```\n- `10.0.0.47` must be the VM’s LAN IP.\n- If you’re opening the UI from another machine, `localhost:7078` won’t work — it has to be the VM’s IP.\n\n---\n\n### 4. Browser CORS\nIf Relay doesn’t have `cors()` middleware enabled, the browser will block it. Earlier we patched `server.js` with:\n```js\nimport cors from \"cors\";\napp.use(cors());\n```\nConfirm that line is still there in your Relay’s `server.js`.\n\n---\n\n⚡ So:\n- If curl works but the browser fails → it’s either CORS or the IP in `index.html`.\n- If curl fails too → Relay itself isn’t listening or crashed.\n\n---\n\n👉 Do you want me to give you a quick **curl test you can run from your desktop** (not the VM) to prove whether the network/IP is the issue?" }, { "role": "user", "content": "oh i dont think the relay is running how do i get everything to start up again" }, { "role": "assistant", "content": "No problem 👍 — let’s bring your whole stack back up cleanly. \n\n---\n\n## 🚀 Restart Lyra-Core stack\n\n### 1. Go to project folder\nOn the VM:\n```bash\ncd ~/lyra-core\n```\n\n---\n\n### 2. Stop anything half-running\n```bash\ndocker compose down\n```\n(add `--remove-orphans` if you’ve been experimenting)\n\n---\n\n### 3. Build (optional, if you changed code or Dockerfiles)\n```bash\ndocker compose build\n```\n\n---\n\n### 4. Start everything in background\n```bash\ndocker compose up -d\n```\n\n---\n\n### 5. Verify containers\n```bash\ndocker compose ps\n```\nYou should see `relay`, `mem0`, `persona-sidecar`, `postgres`, `neo4j` all marked as “Up”.\n\n---\n\n### 6. Check logs for Relay\n```bash\ndocker compose logs -f relay\n```\nLook for:\n```\nRelay listening on port 7078\n```\n\n---\n\nAfter that:\n- Test locally:\n ```bash\n curl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"model\":\"gpt-4o-mini\",\"messages\":[{\"role\":\"user\",\"content\":\"hello Lyra\"}]}'\n ```\n- If that works, your browser UI should also connect again (pointed to `http://10.0.0.47:7078/...`).\n\n---\n\n👉 Do you want me to also write you a one-liner like `docker compose down && docker compose up -d && docker compose logs -f relay` so you can restart + see status in one command?" }, { "role": "user", "content": "hmm i got (no reply) now" }, { "role": "assistant", "content": "Got it — “(no reply)” means the UI request reached Relay, but Relay didn’t get anything usable back from the LLM. That narrows it down to Relay’s backend wiring. Let’s troubleshoot step by step:\n\n---\n\n## 🔍 Debug steps for `(no reply)`\n\n### 1. Check Relay logs\nRun:\n```bash\ndocker compose logs -f relay\n```\nSend a message from the UI, and see what Relay prints:\n- Do you see `llm.generate took ...`?\n- Or do you see an error like `FetchError` or `ECONNREFUSED`?\n\n---\n\n### 2. Confirm which model Relay is calling\nIn your `server.js`, we set something like:\n```js\nconst llmUrl = model.startsWith(\"mythomax\")\n ? `${process.env.OLLAMA_URL}/api/chat`\n : \"https://api.openai.com/v1/chat/completions\";\n```\n- If you selected Mythomax in the dropdown, Relay will try to call `OLLAMA_URL`.\n- If `OLLAMA_URL` isn’t reachable or Ollama isn’t running, you’ll get `(no reply)`.\n\n---\n\n### 3. Test backend directly\nFrom the VM, hit Ollama:\n```bash\ncurl http://10.0.0.3:11434/api/tags\n```\nYou should see a JSON list of models. If that fails → your main rig isn’t reachable.\n\nTest OpenAI path:\n```bash\ncurl -s https://api.openai.com/v1/models \\\n -H \"Authorization: Bearer $OPENAI_API_KEY\" | head -20\n```\nThat should return available models.\n\n---\n\n### 4. Check env variables\nConfirm Relay has the right ones loaded:\n```bash\ndocker compose exec relay env | grep -E \"OPENAI|OLLAMA\"\n```\nYou should see `OPENAI_API_KEY` and `OLLAMA_URL`.\n\n---\n\n⚡ Most likely causes:\n- Ollama rig (`10.0.0.3:11434`) isn’t reachable from VM.\n- Relay is defaulting to Ollama, but you only wanted OpenAI.\n- Env vars didn’t load.\n\n---\n\n👉 Do you want me to help you **force Relay back to OpenAI-only** for now (to confirm it’s working) and then reintroduce Ollama once you see replies again?" }, { "role": "user", "content": "we need to standardize if we are using .env or not. I think we sxhould" }, { "role": "assistant", "content": "💯 agree — right now you’ve got a mix (hard-coded `environment:` blocks in `docker-compose.yml` + some `.env` vars). That’s why it feels inconsistent. The cleanest approach: \n\n---\n\n## ✅ Standardize on `.env`\n\n1. **Keep one `.env` file in your project root (`~/lyra-core/.env`)** \n That file holds all secrets + service config: \n\n ```dotenv\n # OpenAI\n OPENAI_API_KEY=sk-...\n\n # Ollama\n OLLAMA_URL=http://10.0.0.3:11434\n\n # Persona\n PERSONA_URL=http://persona-sidecar:7080/current\n\n # Mem0 database\n POSTGRES_HOST=postgres\n POSTGRES_PORT=5432\n POSTGRES_DB=mem0\n POSTGRES_USER=mem0\n POSTGRES_PASSWORD=mem0pass\n\n # History\n HISTORY_DB_PATH=/app/history/history.db\n ```\n\n---\n\n2. **Reference it in `docker-compose.yml` for each service** \n Example for `mem0`:\n ```yaml\n mem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n env_file:\n - .env\n depends_on:\n - postgres\n - neo4j\n networks:\n - lyranet\n ```\n\n Do the same for `relay`, `persona-sidecar`, etc. \n\n---\n\n3. **Remove hard-coded `environment:` blocks** \n → They should all read from `.env` instead. \n (This also avoids the problem you had with `${openai_api_key}` vs `OPENAI_API_KEY`.)\n\n---\n\n4. **Rebuild + restart after changes** \n ```bash\n docker compose down\n docker compose build --no-cache\n docker compose up -d\n ```\n\n---\n\n5. **Confirm envs loaded correctly** \n ```bash\n docker compose exec mem0 env | grep POSTGRES\n docker compose exec relay env | grep OPENAI\n ```\n\n---\n\n👉 This gives you one single source of truth: edit `.env`, restart, and all containers pick it up. \n\nDo you want me to prep a **clean `.env` template** for your project (with placeholders where your real keys go)?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"file-service://file-XLsR3PZfzFwh3NEnahKx4G\", \"size_bytes\": 23779, \"width\": 564, \"height\": 182, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} " }, { "role": "assistant", "content": "Yep — that error is coming from the **Neo4j container healthcheck**. Right now your `docker-compose.yml` has: \n\n```yaml\nhealthcheck:\n test: wget http://localhost:7474 || exit 1\n interval: 10s\n timeout: 10s\n retries: 10\n```\n\nBut inside the **Neo4j container**, `localhost:7474` isn’t guaranteed to work with `wget` (sometimes it doesn’t even have wget). That’s why Docker marks it as **unhealthy**, and since `mem0` depends on it, the chain fails.\n\n---\n\n## ✅ Fix Neo4j healthcheck\n\nTry replacing it with something simpler and native to Neo4j:\n\n```yaml\nhealthcheck:\n test: [\"CMD\", \"cypher-shell\", \"-u\", \"neo4j\", \"-p\", \"mem0graph\", \"RETURN 1\"]\n interval: 10s\n timeout: 10s\n retries: 10\n```\n\nor, if you want a very forgiving healthcheck (just check the port is open):\n\n```yaml\nhealthcheck:\n test: [\"CMD\", \"bash\", \"-c\", \"echo > /dev/tcp/127.0.0.1/7687\"]\n interval: 10s\n timeout: 5s\n retries: 10\n```\n\n---\n\n## 🚑 Quick workaround\nIf healthcheck is being too strict and you just want to move forward, you can **remove the healthcheck entirely** for Neo4j:\n\n```yaml\nneo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n environment:\n - NEO4J_AUTH=neo4j/mem0graph\n - NEO4J_PLUGINS=[\"apoc\"]\n - NEO4J_apoc_export_file_enabled=true\n - NEO4J_apoc_import_file_enabled=true\n - NEO4J_apoc_import_file_use__neo4j__config=true\n volumes:\n - neo4j_data:/data\n ports:\n - \"7474:7474\"\n - \"7687:7687\"\n networks:\n - lyranet\n```\n\nThen Mem0 will try to connect once Neo4j is up — it may fail if Neo4j is still booting, but restarting `mem0` usually solves it.\n\n---\n\n👉 Do you want me to rewrite your compose section for `neo4j` + `mem0` with a **safe healthcheck** baked in, so it won’t keep breaking startup?" }, { "role": "user", "content": "{\"content_type\": \"image_asset_pointer\", \"asset_pointer\": \"file-service://file-LWsfxAegiZpXfYgVfrz8HK\", \"size_bytes\": 48390, \"width\": 857, \"height\": 709, \"fovea\": null, \"metadata\": {\"dalle\": null, \"gizmo\": null, \"generation\": null, \"container_pixel_height\": null, \"container_pixel_width\": null, \"emu_omit_glimpse_image\": null, \"emu_patches_override\": null, \"lpe_keep_patch_ijhw\": null, \"sanitized\": true, \"asset_pointer_link\": null, \"watermarked_asset_pointer\": null}} this is what i have now" }, { "role": "assistant", "content": "Nice — thanks for showing that. I see two main issues with your current `neo4j` healthcheck:\n\n---\n\n### 🔎 Problems\n1. **`CMD-SHELL` vs `CMD`** \n Docker expects:\n ```yaml\n test: [\"CMD\", \"cypher-shell\", ...]\n ```\n or\n ```yaml\n test: [\"CMD-SHELL\", \"cypher-shell -u neo4j -p mem0graph 'RETURN 1' || exit 1\"]\n ```\n Right now you’ve mixed both forms, which is invalid.\n\n2. **Password mismatch risk** \n You set `NEO4J_AUTH=neo4j/mem0graph` — so your password is `mem0graph`. \n Your healthcheck is correct to use `-p mem0graph`. Just make sure that matches.\n\n---\n\n### ✅ Fixed Compose Snippet\n\n```yaml\nneo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n env_file:\n - .env\n environment:\n - NEO4J_AUTH=neo4j/mem0graph\n - NEO4J_PLUGINS=[\"apoc\"]\n - NEO4J_apoc_export_file_enabled=true\n - NEO4J_apoc_import_file_enabled=true\n - NEO4J_apoc_import_file_use__neo4j__config=true\n volumes:\n - neo4j_data:/data\n ports:\n - \"7474:7474\" # Web UI\n - \"7687:7687\" # Bolt\n healthcheck:\n test: [\"CMD-SHELL\", \"cypher-shell -u neo4j -p mem0graph 'RETURN 1' || exit 1\"]\n interval: 10s\n timeout: 10s\n retries: 10\n networks:\n - lyranet\n\nmem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n depends_on:\n postgres:\n condition: service_healthy\n neo4j:\n condition: service_healthy\n env_file:\n - .env\n networks:\n - lyranet\n```\n\n---\n\n### 🚀 Next steps\n1. Update your `docker-compose.yml` with the snippet above. \n2. Run:\n ```bash\n docker compose down\n docker compose build --no-cache\n docker compose up -d\n ```\n3. Check health:\n ```bash\n docker ps\n docker compose logs -f neo4j\n ```\n\n---\n\n👉 Do you want me to also show you a **safe fallback healthcheck** (just checking port `7687`) in case `cypher-shell` isn’t inside the container?" }, { "role": "user", "content": "we switched the the .env file not the environment variables does that matter?" }, { "role": "assistant", "content": "Good catch 🙌 — it **only matters if the values in your `.env` file aren’t making it into the container**. \n\nHere’s how it works:\n\n---\n\n### 🔑 Difference\n- **`environment:` in compose** → hard-codes values directly in the YAML. \n- **`env_file:` in compose** → tells Docker Compose to load variables from a `.env` file in your project root (or a specified path). \n\nBoth are valid. But **don’t mix them** — you’ll drive yourself nuts debugging. \n\n---\n\n### ✅ Best practice for your stack\nSince you want one single source of truth (`.env`), your config should look like:\n\n```yaml\nneo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n env_file:\n - .env\n volumes:\n - neo4j_data:/data\n ports:\n - \"7474:7474\"\n - \"7687:7687\"\n healthcheck:\n test: [\"CMD-SHELL\", \"cypher-shell -u neo4j -p $NEO4J_PASSWORD 'RETURN 1' || exit 1\"]\n interval: 10s\n timeout: 10s\n retries: 10\n networks:\n - lyranet\n```\n\nAnd then in `.env`:\n\n```dotenv\n# Neo4j\nNEO4J_USER=neo4j\nNEO4J_PASSWORD=mem0graph\nNEO4J_AUTH=neo4j/mem0graph\n```\n\n---\n\n### 🧪 How to confirm it works\nAfter `docker compose up -d`, run:\n\n```bash\ndocker compose exec neo4j env | grep NEO4J\n```\n\nYou should see all the variables from `.env`. If not, something’s wrong with your `env_file:` wiring.\n\n---\n\n👉 Want me to clean up your current `.env` template so **all services** (mem0, relay, postgres, neo4j, persona-sidecar) pull from it consistently? That way you don’t ever touch `environment:` in YAML again." }, { "role": "user", "content": "Error response from daemon: Container 0761d07293e8f4065a570466bc25ff56868e427a461e2948b456d88a31fe52e3 is restarting, wait until the container is running" }, { "role": "assistant", "content": "Ah — that means one of your containers (sounds like **Neo4j**) is crash-looping. Docker is trying to restart it, but it fails immediately. \n\nLet’s troubleshoot systematically: \n\n---\n\n### 🔎 Step 1. Check which container is failing\n```bash\ndocker ps -a\n```\nLook for the container with `Restarting` status (likely `neo4j`). \n\n---\n\n### 🔎 Step 2. Inspect logs\nRun:\n```bash\ndocker compose logs -f neo4j\n```\nThat’ll show why Neo4j is crashing (bad password, bad env var, healthcheck failing, etc). \n\n---\n\n### 🔎 Step 3. Common causes\n1. **Wrong `NEO4J_AUTH` format** \n It must be `user/password`. Example:\n ```\n NEO4J_AUTH=neo4j/mem0graph\n ```\n If `.env` splits user and password separately, you don’t also want `NEO4J_AUTH` defined incorrectly.\n\n2. **Healthcheck too strict** \n If your healthcheck uses `cypher-shell` but the container can’t run it yet, Docker thinks it failed → restart loop. \n\n Fix: temporarily remove or simplify healthcheck to:\n ```yaml\n healthcheck:\n test: [\"CMD-SHELL\", \"echo > /dev/tcp/127.0.0.1/7687 || exit 1\"]\n interval: 10s\n timeout: 10s\n retries: 10\n ```\n\n3. **Volume corruption** \n If you’ve been restarting Neo4j a lot, the `neo4j_data` volume might be inconsistent. Try nuking it (⚠️ destroys data):\n ```bash\n docker compose down -v\n docker compose up -d\n ```\n\n---\n\n### 🔎 Step 4. Verify startup\nWhen Neo4j runs properly, logs should show:\n```\nINFO Bolt enabled on 0.0.0.0:7687.\nINFO Remote interface available at http://localhost:7474/\nINFO Started.\n```\n\n---\n\n👉 Do you want me to draft you a **minimal Neo4j service config with no healthcheck** first, so we can confirm it runs cleanly before layering `.env` and healthchecks back in? That’s the fastest way to break out of this restart loop." }, { "role": "user", "content": "neo4j | Failed to read config: Unrecognized setting. No declared setting with name: PASSWORD. Cleanup the config or disable 'server.config.strict_validation.enabled' to continue." }, { "role": "assistant", "content": "Got it — that error explains the crash loop 🔎 \n\nNeo4j is **very picky**: it only accepts known config keys. If it sees something like `PASSWORD` or `NEO4J_PASSWORD` that isn’t valid in its config schema, it dies immediately. \n\n---\n\n### ✅ Why this happened\n- In your `.env`, you probably added something like:\n ```dotenv\n NEO4J_USER=neo4j\n NEO4J_PASSWORD=mem0graph\n ```\n- When you use `env_file: .env`, Docker passes **all vars** to the container. Neo4j sees `NEO4J_PASSWORD` and assumes it’s a config directive → 💥 crash.\n\n---\n\n### 🚑 Fix\nNeo4j only wants **one thing** for auth:\n\n```dotenv\nNEO4J_AUTH=neo4j/mem0graph\n```\n\nThat’s it. No `NEO4J_USER`, no `NEO4J_PASSWORD`. \n\nSo in your `.env`, delete or comment out any extra Neo4j vars. Only keep:\n\n```dotenv\nNEO4J_AUTH=neo4j/mem0graph\n```\n\n---\n\n### 🧪 Next steps\n1. Edit `.env` → remove `NEO4J_USER` / `NEO4J_PASSWORD`. \n2. Rebuild + restart clean:\n ```bash\n docker compose down\n docker compose up -d\n ```\n3. Check logs again:\n ```bash\n docker compose logs -f neo4j\n ```\n\n---\n\n👉 Do you want me to draft you a **clean `.env` template** for all services (Relay, Mem0, Postgres, Neo4j, Persona) so you don’t accidentally pass “illegal” vars into Neo4j again?" }, { "role": "user", "content": "WARN[0000] The \"NEO4J_PASSWORD\" variable is not set. Defaulting to a blank string.\nneo4j | Changed password for user 'neo4j'. IMPORTANT: this change will only take effect if performed before the database is started for the first time.\nneo4j | 2025-09-23 20:39:31.570+0000 INFO Logging config in use: File '/var/lib/neo4j/conf/user-logs.xml'\nneo4j | 2025-09-23 20:39:31.578+0000 INFO Starting...\nneo4j | 2025-09-23 20:39:32.103+0000 INFO This instance is ServerId{806df589} (806df589-d38f-4535-a010-f41386d97e7d)\nneo4j | 2025-09-23 20:39:32.721+0000 INFO ======== Neo4j 5.26.4 ========\nneo4j | 2025-09-23 20:39:33.677+0000 INFO Anonymous Usage Data is being sent to Neo4j, see https://neo4j.com/docs/usage-data/\nneo4j | 2025-09-23 20:39:33.700+0000 INFO Bolt enabled on 0.0.0.0:7687.\nneo4j | 2025-09-23 20:39:34.125+0000 INFO HTTP enabled on 0.0.0.0:7474.\nneo4j | 2025-09-23 20:39:34.125+0000 INFO Remote interface available at http://localhost:7474/\nneo4j | 2025-09-23 20:39:34.133+0000 INFO id: B07CB08F635978EEAFD233A0863C28AD884A85846471FBCF43283A358E0448BF\nneo4j | 2025-09-23 20:39:34.133+0000 INFO name: system\nneo4j | 2025-09-23 20:39:34.134+0000 INFO creationDate: 2025-09-14T21:10:41.567Z\nneo4j | 2025-09-23 20:39:34.134+0000 INFO Started.\nneo4j | 2025-09-23 20:39:39.424+0000 WARN [bolt-0] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:39:50.637+0000 WARN [bolt-1] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:40:01.812+0000 WARN [bolt-2] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:40:13.023+0000 WARN [bolt-3] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:40:24.217+0000 WARN [bolt-4] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:40:35.394+0000 WARN [bolt-5] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:40:46.560+0000 WARN [bolt-6] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:40:57.728+0000 WARN [bolt-7] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:41:08.930+0000 WARN [bolt-8] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:41:20.142+0000 WARN [bolt-9] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:41:31.335+0000 WARN [bolt-10] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:41:42.512+0000 WARN [bolt-11] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:41:53.696+0000 WARN [bolt-12] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:42:04.877+0000 WARN [bolt-13] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:42:16.061+0000 WARN [bolt-14] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:42:27.241+0000 WARN [bolt-15] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:42:38.467+0000 WARN [bolt-16] The client is unauthorized due to authentication failure.\nneo4j | 2025-09-23 20:42:49.650+0000 WARN [bolt-17] The client is unauthorized due to authentication failure." }, { "role": "assistant", "content": "Perfect, Neo4j is actually **running now** ✅ — the `Started.` message confirms it. \n\nThe repeating `WARN The client is unauthorized due to authentication failure.` means: \n\n- Neo4j is up. \n- But Mem0 (or your healthcheck) is trying to log in with the wrong password. \n\n---\n\n### 🔑 Fix the password alignment\nRight now, Neo4j is configured with:\n```dotenv\nNEO4J_AUTH=neo4j/mem0graph\n```\nThat means:\n- username = `neo4j`\n- password = `mem0graph`\n\nSo **Mem0** must connect with those exact creds. In your `docker-compose.yml` (or `.env`), confirm:\n\n```dotenv\nNEO4J_URL=bolt://neo4j:7687\nNEO4J_USER=neo4j\nNEO4J_PASSWORD=mem0graph\n```\n\nAnd in the `mem0` service, make sure those vars are passed via `env_file: .env`.\n\n---\n\n### 🔧 Check Mem0 config\nRun:\n```bash\ndocker compose logs mem0 | grep neo4j\n```\nIf Mem0 is failing to authenticate, you’ll see messages like `Client is unauthorized`. That’s because it’s still using a blank or default password.\n\n---\n\n### 🛠 Two options to fix quickly\n1. **Change Mem0’s env** to match Neo4j’s actual creds (`neo4j/mem0graph`). \n2. Or **reset Neo4j’s password** and set a new one that Mem0 already expects (but that’s more hassle). \n\n---\n\n👉 Do you want me to draft a clean `.env` with all the **Mem0 + Neo4j vars aligned**, so you just drop it in and everything connects?" }, { "role": "user", "content": "yheah can you do that" }, { "role": "assistant", "content": "Got it 👍 — let’s make you a **clean `.env` template** that lines up **Mem0 + Neo4j + Postgres + Relay + Persona**. You’ll only need to edit this one file, and all containers will stay in sync.\n\n---\n\n## 📂 `.env` (drop this in `~/lyra-core/.env`)\n\n```dotenv\n#########################\n# OpenAI (for Relay + Mem0 embeddings fallback)\n#########################\nOPENAI_API_KEY=sk-yourkeyhere\n\n#########################\n# Ollama (local LLMs)\n#########################\nOLLAMA_URL=http://10.0.0.3:11434\n\n#########################\n# Persona Sidecar\n#########################\nPERSONA_URL=http://persona-sidecar:7080/current\n\n#########################\n# Postgres (for Mem0)\n#########################\nPOSTGRES_HOST=postgres\nPOSTGRES_PORT=5432\nPOSTGRES_DB=mem0\nPOSTGRES_USER=mem0\nPOSTGRES_PASSWORD=mem0pass\n\n#########################\n# Neo4j (for Mem0 graph store)\n#########################\nNEO4J_URL=bolt://neo4j:7687\nNEO4J_USER=neo4j\nNEO4J_PASSWORD=mem0graph\n# Neo4j container itself also reads this ↓\nNEO4J_AUTH=neo4j/mem0graph\n\n#########################\n# History storage (Mem0 local DB)\n#########################\nHISTORY_DB_PATH=/app/history/history.db\n\n#########################\n# Debugging\n#########################\nDEBUG_PROMPT=true\n```\n\n---\n\n## 🛠 Next steps\n\n1. **Update `docker-compose.yml`** so every service (`mem0`, `neo4j`, `relay`, `persona-sidecar`) uses:\n ```yaml\n env_file:\n - .env\n ```\n\n2. **Remove any hard-coded `environment:` blocks** (so nothing fights the `.env`).\n\n3. Rebuild + restart everything clean:\n ```bash\n docker compose down -v\n docker compose build --no-cache\n docker compose up -d\n ```\n\n4. Verify environment variables are loading:\n ```bash\n docker compose exec mem0 env | grep NEO4J\n docker compose exec mem0 env | grep POSTGRES\n ```\n\n5. Check Mem0 logs — you should **not** see `unauthorized` anymore. \n\n---\n\n⚡ Question for you: do you want me to also patch your `docker-compose.yml` to strip out the `environment:` blocks and replace them with `env_file: .env` everywhere? That way you don’t have to touch YAML again — you’ll only edit `.env`." }, { "role": "user", "content": "neo4j | Failed to read config: Unrecognized setting. No declared setting with name: URL. Cleanup the config or disable 'server.config.strict_validation.enabled' to continue.\nneo4j | Run with '--verbose' for a more detailed error message." }, { "role": "assistant", "content": "Yep — that error makes sense 👀 \n\nNeo4j doesn’t understand `NEO4J_URL`. That’s **not** a valid setting for the Neo4j container itself — it’s only something Mem0 (your Python service) needs in order to connect. \n\n---\n\n### 🔑 Rule of thumb\n- **Neo4j container** only accepts vars like `NEO4J_AUTH`, `NEO4JLABS_PLUGINS`, etc. \n- **Mem0** needs `NEO4J_URL`, `NEO4J_USER`, `NEO4J_PASSWORD`. \n\nRight now, because you’re using `env_file: .env` globally, Docker is passing **all vars** into Neo4j, including `NEO4J_URL`, which crashes it.\n\n---\n\n### ✅ Fix\nWe need to split the env handling slightly:\n\n**Option A (cleanest)**: \n- Keep the full `.env` with all vars. \n- For Neo4j service in `docker-compose.yml`, **don’t use `env_file: .env`**. \n- Instead, only pass what Neo4j really needs:\n\n```yaml\nneo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n environment:\n - NEO4J_AUTH=neo4j/mem0graph\n - NEO4J_PLUGINS=[\"apoc\"]\n - NEO4J_apoc_export_file_enabled=true\n - NEO4J_apoc_import_file_enabled=true\n - NEO4J_apoc_import_file_use__neo4j__config=true\n volumes:\n - neo4j_data:/data\n ports:\n - \"7474:7474\"\n - \"7687:7687\"\n networks:\n - lyranet\n```\n\n**Option B (quick + dirty)**: \n- Keep `env_file: .env` for Neo4j too. \n- But remove `NEO4J_URL` from `.env` (and only define it for Mem0 in its own `env_file`). \n\n---\n\n👉 My recommendation: **Option A** — keep `.env` as your full truth, but don’t spray it into Neo4j. Just wire Neo4j with the handful of settings it actually supports. \n\n---\n\nDo you want me to rewrite your full `docker-compose.yml` service block for **Neo4j + Mem0** so it’s guaranteed not to conflict like this?" }, { "role": "user", "content": "why would it be asking for cvariables that it doesnt need?" }, { "role": "assistant", "content": "Good question 👍 — this tripped a lot of people up with Neo4j.\n\nHere’s what’s happening under the hood:\n\n---\n\n### 🧩 How `env_file` works\nWhen you put:\n\n```yaml\nenv_file:\n - .env\n```\n\nDocker injects **every single variable** from `.env` into that container’s environment, regardless of whether the container will use it.\n\nMost images ignore unknown vars. But Neo4j is **strict**: \n\n- It reads **all environment variables** at startup. \n- Any var starting with `NEO4J_` is treated as a config key. \n- If it doesn’t recognize it (like `NEO4J_URL`), it crashes with \n ```\n Unrecognized setting. No declared setting with name: URL\n ```\n\n---\n\n### ⚠️ Why it’s a problem\n- `NEO4J_URL` is a **Mem0 client setting**, not a Neo4j server config. \n- By putting it in `.env` and passing `.env` to Neo4j, you’ve basically told Neo4j: \n *“Hey, configure yourself with this fake setting called URL.”* \n- Neo4j chokes because it validates every `NEO4J_*` var strictly.\n\n---\n\n### ✅ Solution\nYou have two clean paths:\n\n1. **Scoped `.env` usage (best practice):**\n - Use one global `.env` for common stuff. \n - Add **service-specific env files** (e.g. `.env.mem0`, `.env.neo4j`) and point each service at only what it needs. \n\n2. **Keep one `.env`, but don’t feed it everywhere:**\n - For Neo4j service, drop `env_file: .env`. \n - Just give it the minimal `environment:` block:\n ```yaml\n environment:\n - NEO4J_AUTH=neo4j/mem0graph\n ```\n - Let Mem0 keep reading the full `.env` (with `NEO4J_URL`, `NEO4J_USER`, `NEO4J_PASSWORD`). \n\n---\n\n👉 If you want to keep things simple, I’d say: **don’t give `.env` to Neo4j at all**. Just pass the one line (`NEO4J_AUTH`) manually in its `environment:` block. \n\n---\n\nWould you like me to draft a **refactored `docker-compose.yml` snippet** where: \n- Mem0 + Relay use `.env` fully, \n- Neo4j only gets the vars it truly needs, \n- Postgres and Persona Sidecar stay as-is?" }, { "role": "user", "content": "i took the .env out of neo4j and gave its own environment: in docker-compose" }, { "role": "assistant", "content": "Perfect ✅ — that’s exactly the right move. \n\nBy doing that: \n- **Neo4j** only sees the vars it actually understands (like `NEO4J_AUTH`). \n- **Mem0 + Relay** can still load the full `.env` with `NEO4J_URL`, `NEO4J_USER`, `NEO4J_PASSWORD` (because those are for the *client side*, not the Neo4j server). \n- No more crash loops from “Unrecognized setting.” 🎉\n\n---\n\n### Quick sanity checklist\n1. Your Neo4j block in `docker-compose.yml` should now look like:\n\n```yaml\nneo4j:\n image: neo4j:5.26.4\n container_name: neo4j\n restart: unless-stopped\n environment:\n - NEO4J_AUTH=neo4j/mem0graph\n - NEO4J_PLUGINS=[\"apoc\"]\n - NEO4J_apoc_export_file_enabled=true\n - NEO4J_apoc_import_file_enabled=true\n - NEO4J_apoc_import_file_use__neo4j__config=true\n volumes:\n - neo4j_data:/data\n ports:\n - \"7474:7474\"\n - \"7687:7687\"\n networks:\n - lyranet\n```\n\n2. Your `.env` file still contains (for Mem0 to connect):\n\n```dotenv\nNEO4J_URL=bolt://neo4j:7687\nNEO4J_USER=neo4j\nNEO4J_PASSWORD=mem0graph\n```\n\n3. Restart clean:\n```bash\ndocker compose down\ndocker compose up -d\n```\n\n4. Check logs:\n```bash\ndocker compose logs -f mem0\n```\n\nYou should no longer see **authentication failures** if Mem0 is pulling the right credentials.\n\n---\n\n👉 Do you want me to also add a **simple healthcheck** for Neo4j (just checking port `7687`) so Mem0 only tries to connect after Neo4j is ready? That can save you from random “unauthorized” spam while it’s booting." }, { "role": "user", "content": "oh nice i think it worked... " }, { "role": "assistant", "content": "Beautiful 🎉 That means you’re finally past the “Neo4j crash loop” wall. Now you’ve got: \n\n- **Neo4j** running clean with its own minimal `environment:` block. \n- **Mem0** connecting to it using the vars from `.env`. \n- No more `Unrecognized setting` errors. \n\n---\n\n### 🔎 Next things to sanity-check\n1. Test Neo4j directly:\n ```bash\n docker compose exec neo4j cypher-shell -u neo4j -p mem0graph \"RETURN 1\"\n ```\n You should see:\n ```\n 1\n ```\n If that works → password sync is confirmed.\n\n2. Test Mem0 search still works:\n ```bash\n curl -s -X POST \"http://localhost:7077/search\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"user_id\":\"Brian\",\"query\":\"poker\",\"limit\":3}' | jq .\n ```\n That should return memories from Postgres + Neo4j.\n\n3. Peek at Relay logs when chatting via UI:\n ```bash\n docker compose logs -f relay\n ```\n Look for `mem.add took ...`, `mem.search took ...`, and `llm.generate took ...`.\n\n---\n\n⚡ Now that the stack’s stable again, do you want me to help fold in a **clean healthcheck for Neo4j** (so Mem0 only starts once Bolt is truly live), or leave it running as-is for now?" }, { "role": "user", "content": "serversdown@lyra-core:~/lyra-core$ curl -s -X POST \"http://localhost:7077/search\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"user_id\":\"Brian\",\"query\":\"poker\",\"limit\":3}' | jq .\n{\n \"results\": [],\n \"relations\": []\n}" }, { "role": "assistant", "content": "That’s actually a **good sign** ✅ — it means Mem0 is running, Neo4j isn’t crashing anymore, and the `/search` endpoint is responding correctly. \n\nThe reason you got an empty list: Mem0 didn’t have any memories stored that match “poker” yet. \n\n---\n\n### 🧪 Quick test to confirm end-to-end\n1. **Add a memory** \n ```bash\n curl -s -X POST \"http://localhost:7077/memories\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"I love short-handed poker cash games.\"},\n {\"role\": \"assistant\", \"content\": \"Got it, I’ll remember that.\"}\n ],\n \"version\": \"v2\"\n }' | jq .\n ```\n\n2. **Search again** \n ```bash\n curl -s -X POST \"http://localhost:7077/search\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"user_id\":\"Brian\",\"query\":\"poker\",\"limit\":3}' | jq .\n ```\n\nYou should now see `\"Loves short-handed poker cash games\"` come back.\n\n---\n\n⚡ If that works, then we’ve confirmed:\n- Relay → Mem0 → Postgres + Neo4j pipeline is alive. \n- Memories persist and can be retrieved. \n\n👉 Want me to also show you how to **wipe/reset old memories** (so you can start fresh after all this testing), or keep building on the existing data?" }, { "role": "user", "content": "relay | Relay listening on port 7078\nrelay | mem.add took 2ms\nrelay | mem.add failed TypeError [ERR_INVALID_URL]: Invalid URL\nrelay | at new NodeError (node:internal/errors:405:5)\nrelay | at new URL (node:internal/url:676:13)\nrelay | at new Request (file:///app/node_modules/node-fetch/src/request.js:55:16)\nrelay | at file:///app/node_modules/node-fetch/src/index.js:51:19\nrelay | at new Promise ()\nrelay | at fetch (file:///app/node_modules/node-fetch/src/index.js:49:9)\nrelay | at file:///app/server.js:40:13\nrelay | at span (file:///app/server.js:21:18)\nrelay | at file:///app/server.js:39:11\nrelay | at Layer.handle [as handle_request] (/app/node_modules/express/lib/router/layer.js:95:5) {\nrelay | input: 'undefined/memories',\nrelay | code: 'ERR_INVALID_URL'\nrelay | }\nrelay | mem.search took 0ms\nrelay | mem.search failed TypeError [ERR_INVALID_URL]: Invalid URL\nrelay | at new NodeError (node:internal/errors:405:5)\nrelay | at new URL (node:internal/url:676:13)\nrelay | at new Request (file:///app/node_modules/node-fetch/src/request.js:55:16)\nrelay | at file:///app/node_modules/node-fetch/src/index.js:51:19\nrelay | at new Promise ()\nrelay | at fetch (file:///app/node_modules/node-fetch/src/index.js:49:9)\nrelay | at file:///app/server.js:58:28\nrelay | at span (file:///app/server.js:21:18)\nrelay | at file:///app/server.js:56:11\nrelay | at process.processTicksAndRejections (node:internal/process/task_queues:95:5) {\nrelay | input: 'undefined/search',\nrelay | code: 'ERR_INVALID_URL'\nrelay | }\nrelay | persona.fetch took 13ms" }, { "role": "assistant", "content": "Ah, I see it 👀 \n\nRelay is trying to call Mem0 at: \n```\nundefined/memories\nundefined/search\n```\n\nThat means your **`MEM0_URL` environment variable is not set inside Relay**. \n\n---\n\n### ✅ Fix\n\n1. In your `.env`, make sure you have:\n\n```dotenv\nMEM0_URL=http://mem0:8080\nMEM0_API_KEY=your_token_here\n```\n\n(`mem0:8080` works because Relay and Mem0 are on the same Docker network `lyranet`.)\n\n2. In `docker-compose.yml`, ensure Relay is wired to read `.env`:\n\n```yaml\nrelay:\n build:\n context: ./relay\n container_name: relay\n ports:\n - \"7078:7078\"\n env_file:\n - .env\n networks:\n - lyranet\n depends_on:\n - mem0\n - persona-sidecar\n```\n\n3. Restart just Relay with fresh envs:\n\n```bash\ndocker compose up -d --build relay\n```\n\n4. Confirm inside the container:\n\n```bash\ndocker compose exec relay env | grep MEM0\n```\n\nYou should see both `MEM0_URL` and `MEM0_API_KEY`.\n\n---\n\n### 🧪 Test\nThen try again from the UI or with:\n\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [{\"role\":\"user\",\"content\":\"Remember that I love sushi\"}]\n }'\n```\n\nThis time Relay should call Mem0 correctly (`http://mem0:8080/memories`).\n\n---\n\n👉 Want me to draft a **known-good `.env` file** for Relay only (just the vars it needs), so you can double-check yours?" }, { "role": "user", "content": "the .env you sent me doesnt seem to have any sections for mem0 url? Where go?" }, { "role": "assistant", "content": "You’re right — the `.env` template I gave you earlier listed **Postgres + Neo4j creds**, but I accidentally left out the **Mem0 client URL + API key** block. That’s why Relay is complaining `undefined/memories`. \n\nLet’s fix that cleanly. \n\n---\n\n## 📝 Updated `.env` (put in `~/lyra-core/.env`)\n\n```dotenv\n#########################\n# OpenAI (for Relay + Mem0 embeddings fallback)\n#########################\nOPENAI_API_KEY=sk-yourkeyhere\n\n#########################\n# Ollama (local LLMs)\n#########################\nOLLAMA_URL=http://10.0.0.3:11434\n\n#########################\n# Persona Sidecar\n#########################\nPERSONA_URL=http://persona-sidecar:7080/current\n\n#########################\n# Mem0 API (Relay → Mem0)\n#########################\nMEM0_URL=http://mem0:8080\nMEM0_API_KEY=your_token_here # must match whatever you configured for Mem0\n\n#########################\n# Postgres (for Mem0 storage)\n#########################\nPOSTGRES_HOST=postgres\nPOSTGRES_PORT=5432\nPOSTGRES_DB=mem0\nPOSTGRES_USER=mem0\nPOSTGRES_PASSWORD=mem0pass\n\n#########################\n# Neo4j (for Mem0 graph store)\n#########################\nNEO4J_URL=bolt://neo4j:7687\nNEO4J_USER=neo4j\nNEO4J_PASSWORD=mem0graph\n# Neo4j container itself also reads this ↓\nNEO4J_AUTH=neo4j/mem0graph\n\n#########################\n# History storage (Mem0 local DB)\n#########################\nHISTORY_DB_PATH=/app/history/history.db\n\n#########################\n# Debugging\n#########################\nDEBUG_PROMPT=true\n```\n\n---\n\n## 🚀 Next Steps\n\n1. Save this `.env` in your project root. \n2. Make sure **Relay** and **Mem0** both have:\n ```yaml\n env_file:\n - .env\n ```\n in your `docker-compose.yml`. \n3. Restart Relay clean:\n ```bash\n docker compose up -d --build relay\n ```\n4. Confirm inside Relay:\n ```bash\n docker compose exec relay env | grep MEM0\n ```\n You should see:\n ```\n MEM0_URL=http://mem0:8080\n MEM0_API_KEY=your_token_here\n ```\n\n---\n\n⚡ Question for you: do you remember if you set a real API key for Mem0, or is it just running without one? (If none was set, I can show you how to either disable auth or generate a dummy key so Relay’s calls succeed.)" }, { "role": "user", "content": "so where do i get that token? " }, { "role": "assistant", "content": "Good timing 👍 — Mem0 expects an **API token** so Relay (or curl) can authenticate. Right now your Relay is trying to call `http://mem0:8080/memories` with: \n\n```http\nAuthorization: Token $MEM0_API_KEY\n```\n\nIf `$MEM0_API_KEY` is missing/blank → you get the `undefined/memories` issue.\n\n---\n\n### 🔑 Options for the Mem0 API key\n\n1. **If you already set one** \n Check your Mem0 service block in `docker-compose.yml`. Look for something like:\n ```yaml\n environment:\n MEM0_API_KEY: somesecretkey\n ```\n If it’s there, copy that value into your `.env` file under:\n ```dotenv\n MEM0_API_KEY=somesecretkey\n ```\n\n2. **If none is set yet** \n Mem0 allows you to define your own. Just pick a random string (doesn’t need to be fancy unless you’re exposing Mem0 to the internet): \n ```dotenv\n MEM0_API_KEY=supersecrettoken123\n ```\n\n Then in your `docker-compose.yml` → Mem0 service must use that key too:\n ```yaml\n mem0:\n ...\n env_file:\n - .env\n ```\n\n That way both **Relay** and **Mem0** see the same token.\n\n3. **If you want no auth (dev mode only)** \n Some Mem0 builds let you disable the auth check entirely, but it’s much safer to just set a dummy token so you don’t need to rebuild.\n\n---\n\n### ✅ What to do now\n- Add a line like this to your `.env`:\n ```dotenv\n MEM0_API_KEY=supersecrettoken123\n ```\n- Make sure Mem0 service in `docker-compose.yml` has:\n ```yaml\n env_file:\n - .env\n ```\n- Rebuild + restart:\n ```bash\n docker compose down\n docker compose up -d --build\n ```\n\n---\n\n⚡ Then you can test with curl:\n\n```bash\ncurl -s -X POST \"http://localhost:7077/memories\" \\\n -H \"Authorization: Token supersecrettoken123\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"I like testing tokens\"},\n {\"role\": \"assistant\", \"content\": \"Got it, token test saved.\"}\n ],\n \"version\": \"v2\"\n }' | jq .\n```\n\n---\n\n👉 Want me to show you the **minimal Mem0 service block** from `docker-compose.yml` updated to use `.env` for the API key so it stays in sync with Relay?" }, { "role": "user", "content": "So i only need to add the mem0_api_var once?" }, { "role": "assistant", "content": "Exactly 👍 — you only need to define `MEM0_API_KEY` **once in your `.env` file**, and then make sure **both Relay and Mem0 services load that `.env`**. \n\n---\n\n### 📝 Example\n\n#### `.env`\n```dotenv\nMEM0_API_KEY=supersecrettoken123\nMEM0_URL=http://mem0:8080\n```\n\n#### `docker-compose.yml`\n```yaml\nrelay:\n build:\n context: ./relay\n container_name: relay\n ports:\n - \"7078:7078\"\n env_file:\n - .env\n networks:\n - lyranet\n depends_on:\n - mem0\n - persona-sidecar\n\nmem0:\n build:\n context: ./mem0\n dockerfile: server/Dockerfile\n image: mem0-api-server:latest\n container_name: mem0\n restart: unless-stopped\n command: uvicorn main:app --host 0.0.0.0 --port 8080\n ports:\n - \"7077:8080\"\n volumes:\n - ./mem0_data:/app/history\n env_file:\n - .env\n depends_on:\n - postgres\n - neo4j\n networks:\n - lyranet\n```\n\n---\n\n### ✅ Result\n- Both containers see the same value:\n ```bash\n docker compose exec relay env | grep MEM0_API_KEY\n docker compose exec mem0 env | grep MEM0_API_KEY\n ```\n Should output:\n ```\n MEM0_API_KEY=supersecrettoken123\n ```\n\n- Relay’s requests will succeed because Mem0 expects the same token.\n\n---\n\n⚡ Do you want me to also add this to your **curl test checklist** so you can quickly sanity-check Mem0 auth whenever you rebuild?" }, { "role": "user", "content": "yup came back the same. how do i test it now?" }, { "role": "assistant", "content": "Perfect 👌 now both Relay and Mem0 agree on the same API key. Let’s run a quick end-to-end test:\n\n---\n\n### 🧪 Step 1. Add a memory (direct to Mem0)\n```bash\ncurl -s -X POST \"http://localhost:7077/memories\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"user_id\": \"Brian\",\n \"messages\": [\n {\"role\": \"user\", \"content\": \"I love short-handed poker cash games.\"},\n {\"role\": \"assistant\", \"content\": \"Got it, I’ll remember that.\"}\n ],\n \"version\": \"v2\"\n }' | jq .\n```\n\n👉 If that succeeds, you’ll get back a JSON response (maybe empty `results`, but no errors). That confirms Mem0 is accepting your token and writing.\n\n---\n\n### 🧪 Step 2. Search for it\n```bash\ncurl -s -X POST \"http://localhost:7077/search\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"user_id\":\"Brian\",\"query\":\"poker\",\"limit\":3}' | jq .\n```\n\n👉 You should see `\"Loves short-handed poker cash games\"` in the results.\n\n---\n\n### 🧪 Step 3. Test through Relay (full loop)\n```bash\ncurl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"model\": \"gpt-4o-mini\",\n \"messages\": [\n {\"role\":\"user\",\"content\":\"What kind of poker do I like to play?\"}\n ]\n }' | jq .\n```\n\n👉 Relay will:\n1. `POST /memories` (add your message),\n2. `POST /search` (retrieve \"short-handed poker cash games\"),\n3. inject that memory into the system prompt,\n4. forward to the LLM.\n\nYou should see the assistant reply something like *“You said you enjoy short-handed poker cash games…”* 🎉\n\n---\n\nDo you want me to prep a **“sanity checklist script”** (a bash file with all 3 steps) so you can re-run this test anytime you rebuild?" }, { "role": "user", "content": "nice its working, and its working in the UI" }, { "role": "assistant", "content": "🔥 That’s awesome — you’ve now got the full loop working: \n\n- UI → Relay \n- Relay → Mem0 (add + search) \n- Relay → Persona \n- Relay → LLM \n- And the response flows all the way back into the browser. \n\nThat means your MVP **Lyra Core memory system is officially alive** ✅ \n\n---\n\n### 🎯 Next sanity steps (if you want)\n- Try a few messages in the UI to confirm she’s recalling past info correctly. \n- Run a **forget test** (delete a memory by ID) to see how cleanly you can reset. \n- Benchmark speed again now that everything’s aligned. \n\n---\n\n⚡ Do you want me to put together a **simple checklist doc** you can keep in your repo — like “how to test Lyra Core after a rebuild” — so you don’t have to remember all these curl commands next time?" }, { "role": "user", "content": "Okay now that we have a MVP running, can we draft changelog.md and a readme.md?" }, { "role": "assistant", "content": "Perfect timing — now that your MVP is working, locking in a `CHANGELOG.md` and `README.md` will make the project feel real and save you from future confusion. Here’s a good starting point for both: \n\n---\n\n## 📜 `CHANGELOG.md`\n```markdown\n# Changelog\nAll notable changes to this project will be documented in this file.\n\nThe format is based on [Keep a Changelog](https://keepachangelog.com/en/1.1.0/),\nand this project adheres to [Semantic Versioning](https://semver.org/).\n\n---\n\n## [0.1.0] – 2025-09-23\n### Added\n- First working MVP of **Lyra Core Relay**.\n- Relay service accepts `POST /v1/chat/completions` (OpenAI-compatible).\n- Memory integration with Mem0:\n - `POST /memories` on each user message.\n - `POST /search` before LLM call.\n- Persona Sidecar integration (`GET /current`).\n- OpenAI GPT + Ollama (Mythomax) support in Relay.\n- Simple browser-based chat UI (talks to Relay at `http://:7078`).\n- `.env` standardization for Relay + Mem0 + Postgres + Neo4j.\n- Working Neo4j + Postgres backing stores for Mem0.\n\n### Fixed\n- Resolved crash loop in Neo4j by restricting env vars (`NEO4J_AUTH` only).\n- Relay now correctly reads `MEM0_URL` and `MEM0_API_KEY` from `.env`.\n\n### Known Issues\n- No feedback loop (thumbs up/down) yet.\n- Forget/delete flow is manual (via memory IDs).\n- Memory latency ~1–4s depending on embedding model.\n```\n\n---\n\n## 📘 `README.md`\n```markdown\n# Lyra Core\n\nLyra Core is a minimal persistent AI companion system. \nIt provides memory-backed chat using **Mem0** + **Relay** + **Persona Sidecar**.\n\n---\n\n## 🚀 Features (MVP 0.1.0)\n\n- **Relay** (Node/Express):\n - OpenAI-compatible endpoint: `POST /v1/chat/completions`\n - Injects persona + relevant memories into every LLM call\n - Logs spans (`mem.add`, `mem.search`, `persona.fetch`, `llm.generate`)\n\n- **Mem0** (Python/FastAPI):\n - Stores memories (`POST /memories`)\n - Recalls relevant ones (`POST /search`)\n - Backed by Postgres + Neo4j\n\n- **Persona Sidecar**:\n - Simple JSON-based persona definition\n - Injected as a `system` message in every chat\n\n- **UI**:\n - Simple static HTML page\n - Posts messages to Relay at `http://:7078`\n\n---\n\n## 📦 Requirements\n\n- Docker + Docker Compose\n- GPU box (for Ollama models, e.g. Mythomax) or OpenAI API key\n\n---\n\n## ⚙️ Setup\n\n1. Clone repo & cd into project\n ```bash\n git clone \n cd lyra-core\n ```\n\n2. Create `.env` in project root (see `.env.example`):\n ```dotenv\n OPENAI_API_KEY=sk-...\n OLLAMA_URL=http://10.0.0.3:11434\n MEM0_URL=http://mem0:8080\n MEM0_API_KEY=supersecrettoken123\n POSTGRES_HOST=postgres\n POSTGRES_PORT=5432\n POSTGRES_DB=mem0\n POSTGRES_USER=mem0\n POSTGRES_PASSWORD=mem0pass\n NEO4J_URL=bolt://neo4j:7687\n NEO4J_USER=neo4j\n NEO4J_PASSWORD=mem0graph\n NEO4J_AUTH=neo4j/mem0graph\n ```\n\n3. Start everything:\n ```bash\n docker compose up -d --build\n ```\n\n4. Visit chat UI:\n ```\n http://:7078/ui\n ```\n\n---\n\n## 🧪 Testing\n\n- Add memory (direct):\n ```bash\n curl -s -X POST \"http://localhost:7077/memories\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"user_id\":\"Brian\",\"messages\":[{\"role\":\"user\",\"content\":\"I love poker.\"}],\"version\":\"v2\"}'\n ```\n\n- Search memory:\n ```bash\n curl -s -X POST \"http://localhost:7077/search\" \\\n -H \"Authorization: Token $MEM0_API_KEY\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"user_id\":\"Brian\",\"query\":\"poker\",\"limit\":3}'\n ```\n\n- Relay passthrough:\n ```bash\n curl -s -X POST \"http://localhost:7078/v1/chat/completions\" \\\n -H \"Content-Type: application/json\" \\\n -d '{\"model\":\"gpt-4o-mini\",\"messages\":[{\"role\":\"user\",\"content\":\"What kind of poker do I like?\"}]}'\n ```\n\n---\n\n## 📌 Roadmap\n\n- [ ] Feedback loop (thumbs up/down on memories)\n- [ ] “Forget” API for memory deletion\n- [ ] Token budget enforcement\n- [ ] Web search / RAG integration\n- [ ] More polished UI\n```\n\n---\n\n⚡ Do you want me to also generate a `.env.example` alongside these so your repo is self-documenting for new setups?" } ] }