405 lines
14 KiB
Python
405 lines
14 KiB
Python
import json
|
|
import logging
|
|
from contextlib import contextmanager
|
|
from typing import Any, List, Optional
|
|
|
|
from pydantic import BaseModel
|
|
|
|
# Try to import psycopg (psycopg3) first, then fall back to psycopg2
|
|
try:
|
|
from psycopg.types.json import Json
|
|
from psycopg_pool import ConnectionPool
|
|
PSYCOPG_VERSION = 3
|
|
logger = logging.getLogger(__name__)
|
|
logger.info("Using psycopg (psycopg3) with ConnectionPool for PostgreSQL connections")
|
|
except ImportError:
|
|
try:
|
|
from psycopg2.extras import Json, execute_values
|
|
from psycopg2.pool import ThreadedConnectionPool as ConnectionPool
|
|
PSYCOPG_VERSION = 2
|
|
logger = logging.getLogger(__name__)
|
|
logger.info("Using psycopg2 with ThreadedConnectionPool for PostgreSQL connections")
|
|
except ImportError:
|
|
raise ImportError(
|
|
"Neither 'psycopg' nor 'psycopg2' library is available. "
|
|
"Please install one of them using 'pip install psycopg[pool]' or 'pip install psycopg2'"
|
|
)
|
|
|
|
from neomem.vector_stores.base import VectorStoreBase
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class OutputData(BaseModel):
|
|
id: Optional[str]
|
|
score: Optional[float]
|
|
payload: Optional[dict]
|
|
|
|
|
|
class PGVector(VectorStoreBase):
|
|
def __init__(
|
|
self,
|
|
dbname,
|
|
collection_name,
|
|
embedding_model_dims,
|
|
user,
|
|
password,
|
|
host,
|
|
port,
|
|
diskann,
|
|
hnsw,
|
|
minconn=1,
|
|
maxconn=5,
|
|
sslmode=None,
|
|
connection_string=None,
|
|
connection_pool=None,
|
|
):
|
|
"""
|
|
Initialize the PGVector database.
|
|
|
|
Args:
|
|
dbname (str): Database name
|
|
collection_name (str): Collection name
|
|
embedding_model_dims (int): Dimension of the embedding vector
|
|
user (str): Database user
|
|
password (str): Database password
|
|
host (str, optional): Database host
|
|
port (int, optional): Database port
|
|
diskann (bool, optional): Use DiskANN for faster search
|
|
hnsw (bool, optional): Use HNSW for faster search
|
|
minconn (int): Minimum number of connections to keep in the connection pool
|
|
maxconn (int): Maximum number of connections allowed in the connection pool
|
|
sslmode (str, optional): SSL mode for PostgreSQL connection (e.g., 'require', 'prefer', 'disable')
|
|
connection_string (str, optional): PostgreSQL connection string (overrides individual connection parameters)
|
|
connection_pool (Any, optional): psycopg2 connection pool object (overrides connection string and individual parameters)
|
|
"""
|
|
self.collection_name = collection_name
|
|
self.use_diskann = diskann
|
|
self.use_hnsw = hnsw
|
|
self.embedding_model_dims = embedding_model_dims
|
|
self.connection_pool = None
|
|
|
|
# Connection setup with priority: connection_pool > connection_string > individual parameters
|
|
if connection_pool is not None:
|
|
# Use provided connection pool
|
|
self.connection_pool = connection_pool
|
|
elif connection_string:
|
|
if sslmode:
|
|
# Append sslmode to connection string if provided
|
|
if 'sslmode=' in connection_string:
|
|
# Replace existing sslmode
|
|
import re
|
|
connection_string = re.sub(r'sslmode=[^ ]*', f'sslmode={sslmode}', connection_string)
|
|
else:
|
|
# Add sslmode to connection string
|
|
connection_string = f"{connection_string} sslmode={sslmode}"
|
|
else:
|
|
connection_string = f"postgresql://{user}:{password}@{host}:{port}/{dbname}"
|
|
if sslmode:
|
|
connection_string = f"{connection_string} sslmode={sslmode}"
|
|
|
|
if self.connection_pool is None:
|
|
if PSYCOPG_VERSION == 3:
|
|
# psycopg3 ConnectionPool
|
|
self.connection_pool = ConnectionPool(conninfo=connection_string, min_size=minconn, max_size=maxconn, open=True)
|
|
else:
|
|
# psycopg2 ThreadedConnectionPool
|
|
self.connection_pool = ConnectionPool(minconn=minconn, maxconn=maxconn, dsn=connection_string)
|
|
|
|
collections = self.list_cols()
|
|
if collection_name not in collections:
|
|
self.create_col()
|
|
|
|
@contextmanager
|
|
def _get_cursor(self, commit: bool = False):
|
|
"""
|
|
Unified context manager to get a cursor from the appropriate pool.
|
|
Auto-commits or rolls back based on exception, and returns the connection to the pool.
|
|
"""
|
|
if PSYCOPG_VERSION == 3:
|
|
# psycopg3 auto-manages commit/rollback and pool return
|
|
with self.connection_pool.connection() as conn:
|
|
with conn.cursor() as cur:
|
|
try:
|
|
yield cur
|
|
if commit:
|
|
conn.commit()
|
|
except Exception:
|
|
conn.rollback()
|
|
logger.error("Error in cursor context (psycopg3)", exc_info=True)
|
|
raise
|
|
else:
|
|
# psycopg2 manual getconn/putconn
|
|
conn = self.connection_pool.getconn()
|
|
cur = conn.cursor()
|
|
try:
|
|
yield cur
|
|
if commit:
|
|
conn.commit()
|
|
except Exception as exc:
|
|
conn.rollback()
|
|
logger.error(f"Error occurred: {exc}")
|
|
raise exc
|
|
finally:
|
|
cur.close()
|
|
self.connection_pool.putconn(conn)
|
|
|
|
def create_col(self) -> None:
|
|
"""
|
|
Create a new collection (table in PostgreSQL).
|
|
Will also initialize vector search index if specified.
|
|
"""
|
|
with self._get_cursor(commit=True) as cur:
|
|
cur.execute("CREATE EXTENSION IF NOT EXISTS vector")
|
|
cur.execute(
|
|
f"""
|
|
CREATE TABLE IF NOT EXISTS {self.collection_name} (
|
|
id UUID PRIMARY KEY,
|
|
vector vector({self.embedding_model_dims}),
|
|
payload JSONB
|
|
);
|
|
"""
|
|
)
|
|
if self.use_diskann and self.embedding_model_dims < 2000:
|
|
cur.execute("SELECT * FROM pg_extension WHERE extname = 'vectorscale'")
|
|
if cur.fetchone():
|
|
# Create DiskANN index if extension is installed for faster search
|
|
cur.execute(
|
|
f"""
|
|
CREATE INDEX IF NOT EXISTS {self.collection_name}_diskann_idx
|
|
ON {self.collection_name}
|
|
USING diskann (vector);
|
|
"""
|
|
)
|
|
elif self.use_hnsw:
|
|
cur.execute(
|
|
f"""
|
|
CREATE INDEX IF NOT EXISTS {self.collection_name}_hnsw_idx
|
|
ON {self.collection_name}
|
|
USING hnsw (vector vector_cosine_ops)
|
|
"""
|
|
)
|
|
|
|
def insert(self, vectors: list[list[float]], payloads=None, ids=None) -> None:
|
|
logger.info(f"Inserting {len(vectors)} vectors into collection {self.collection_name}")
|
|
json_payloads = [json.dumps(payload) for payload in payloads]
|
|
|
|
data = [(id, vector, payload) for id, vector, payload in zip(ids, vectors, json_payloads)]
|
|
if PSYCOPG_VERSION == 3:
|
|
with self._get_cursor(commit=True) as cur:
|
|
cur.executemany(
|
|
f"INSERT INTO {self.collection_name} (id, vector, payload) VALUES (%s, %s, %s)",
|
|
data,
|
|
)
|
|
else:
|
|
with self._get_cursor(commit=True) as cur:
|
|
execute_values(
|
|
cur,
|
|
f"INSERT INTO {self.collection_name} (id, vector, payload) VALUES %s",
|
|
data,
|
|
)
|
|
|
|
def search(
|
|
self,
|
|
query: str,
|
|
vectors: list[float],
|
|
limit: Optional[int] = 5,
|
|
filters: Optional[dict] = None,
|
|
) -> List[OutputData]:
|
|
"""
|
|
Search for similar vectors.
|
|
|
|
Args:
|
|
query (str): Query.
|
|
vectors (List[float]): Query vector.
|
|
limit (int, optional): Number of results to return. Defaults to 5.
|
|
filters (Dict, optional): Filters to apply to the search. Defaults to None.
|
|
|
|
Returns:
|
|
list: Search results.
|
|
"""
|
|
filter_conditions = []
|
|
filter_params = []
|
|
|
|
if filters:
|
|
for k, v in filters.items():
|
|
filter_conditions.append("payload->>%s = %s")
|
|
filter_params.extend([k, str(v)])
|
|
|
|
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
|
|
|
|
with self._get_cursor() as cur:
|
|
cur.execute(
|
|
f"""
|
|
SELECT id, vector <=> %s::vector AS distance, payload
|
|
FROM {self.collection_name}
|
|
{filter_clause}
|
|
ORDER BY distance
|
|
LIMIT %s
|
|
""",
|
|
(vectors, *filter_params, limit),
|
|
)
|
|
|
|
results = cur.fetchall()
|
|
return [OutputData(id=str(r[0]), score=float(r[1]), payload=r[2]) for r in results]
|
|
|
|
def delete(self, vector_id: str) -> None:
|
|
"""
|
|
Delete a vector by ID.
|
|
|
|
Args:
|
|
vector_id (str): ID of the vector to delete.
|
|
"""
|
|
with self._get_cursor(commit=True) as cur:
|
|
cur.execute(f"DELETE FROM {self.collection_name} WHERE id = %s", (vector_id,))
|
|
|
|
def update(
|
|
self,
|
|
vector_id: str,
|
|
vector: Optional[list[float]] = None,
|
|
payload: Optional[dict] = None,
|
|
) -> None:
|
|
"""
|
|
Update a vector and its payload.
|
|
|
|
Args:
|
|
vector_id (str): ID of the vector to update.
|
|
vector (List[float], optional): Updated vector.
|
|
payload (Dict, optional): Updated payload.
|
|
"""
|
|
with self._get_cursor(commit=True) as cur:
|
|
if vector:
|
|
cur.execute(
|
|
f"UPDATE {self.collection_name} SET vector = %s WHERE id = %s",
|
|
(vector, vector_id),
|
|
)
|
|
if payload:
|
|
# Handle JSON serialization based on psycopg version
|
|
if PSYCOPG_VERSION == 3:
|
|
# psycopg3 uses psycopg.types.json.Json
|
|
cur.execute(
|
|
f"UPDATE {self.collection_name} SET payload = %s WHERE id = %s",
|
|
(Json(payload), vector_id),
|
|
)
|
|
else:
|
|
# psycopg2 uses psycopg2.extras.Json
|
|
cur.execute(
|
|
f"UPDATE {self.collection_name} SET payload = %s WHERE id = %s",
|
|
(Json(payload), vector_id),
|
|
)
|
|
|
|
|
|
def get(self, vector_id: str) -> OutputData:
|
|
"""
|
|
Retrieve a vector by ID.
|
|
|
|
Args:
|
|
vector_id (str): ID of the vector to retrieve.
|
|
|
|
Returns:
|
|
OutputData: Retrieved vector.
|
|
"""
|
|
with self._get_cursor() as cur:
|
|
cur.execute(
|
|
f"SELECT id, vector, payload FROM {self.collection_name} WHERE id = %s",
|
|
(vector_id,),
|
|
)
|
|
result = cur.fetchone()
|
|
if not result:
|
|
return None
|
|
return OutputData(id=str(result[0]), score=None, payload=result[2])
|
|
|
|
def list_cols(self) -> List[str]:
|
|
"""
|
|
List all collections.
|
|
|
|
Returns:
|
|
List[str]: List of collection names.
|
|
"""
|
|
with self._get_cursor() as cur:
|
|
cur.execute("SELECT table_name FROM information_schema.tables WHERE table_schema = 'public'")
|
|
return [row[0] for row in cur.fetchall()]
|
|
|
|
def delete_col(self) -> None:
|
|
"""Delete a collection."""
|
|
with self._get_cursor(commit=True) as cur:
|
|
cur.execute(f"DROP TABLE IF EXISTS {self.collection_name}")
|
|
|
|
def col_info(self) -> dict[str, Any]:
|
|
"""
|
|
Get information about a collection.
|
|
|
|
Returns:
|
|
Dict[str, Any]: Collection information.
|
|
"""
|
|
with self._get_cursor() as cur:
|
|
cur.execute(
|
|
f"""
|
|
SELECT
|
|
table_name,
|
|
(SELECT COUNT(*) FROM {self.collection_name}) as row_count,
|
|
(SELECT pg_size_pretty(pg_total_relation_size('{self.collection_name}'))) as total_size
|
|
FROM information_schema.tables
|
|
WHERE table_schema = 'public' AND table_name = %s
|
|
""",
|
|
(self.collection_name,),
|
|
)
|
|
result = cur.fetchone()
|
|
return {"name": result[0], "count": result[1], "size": result[2]}
|
|
|
|
def list(
|
|
self,
|
|
filters: Optional[dict] = None,
|
|
limit: Optional[int] = 100
|
|
) -> List[OutputData]:
|
|
"""
|
|
List all vectors in a collection.
|
|
|
|
Args:
|
|
filters (Dict, optional): Filters to apply to the list.
|
|
limit (int, optional): Number of vectors to return. Defaults to 100.
|
|
|
|
Returns:
|
|
List[OutputData]: List of vectors.
|
|
"""
|
|
filter_conditions = []
|
|
filter_params = []
|
|
|
|
if filters:
|
|
for k, v in filters.items():
|
|
filter_conditions.append("payload->>%s = %s")
|
|
filter_params.extend([k, str(v)])
|
|
|
|
filter_clause = "WHERE " + " AND ".join(filter_conditions) if filter_conditions else ""
|
|
|
|
query = f"""
|
|
SELECT id, vector, payload
|
|
FROM {self.collection_name}
|
|
{filter_clause}
|
|
LIMIT %s
|
|
"""
|
|
|
|
with self._get_cursor() as cur:
|
|
cur.execute(query, (*filter_params, limit))
|
|
results = cur.fetchall()
|
|
return [[OutputData(id=str(r[0]), score=None, payload=r[2]) for r in results]]
|
|
|
|
def __del__(self) -> None:
|
|
"""
|
|
Close the database connection pool when the object is deleted.
|
|
"""
|
|
try:
|
|
# Close pool appropriately
|
|
if PSYCOPG_VERSION == 3:
|
|
self.connection_pool.close()
|
|
else:
|
|
self.connection_pool.closeall()
|
|
except Exception:
|
|
pass
|
|
|
|
def reset(self) -> None:
|
|
"""Reset the index by deleting and recreating it."""
|
|
logger.warning(f"Resetting index {self.collection_name}...")
|
|
self.delete_col()
|
|
self.create_col()
|