Files
project-lyra/rag/rag_api.py
2025-11-16 03:17:32 -05:00

56 lines
1.6 KiB
Python

# rag_api.py
from fastapi import FastAPI, Body
from pydantic import BaseModel
import os, chromadb
from openai import OpenAI
from dotenv import load_dotenv
load_dotenv()
# ---- setup ----
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
chroma = chromadb.PersistentClient(path="./chromadb")
collection = chroma.get_or_create_collection("lyra_chats")
app = FastAPI(title="Lyra RAG API")
class Query(BaseModel):
query: str
n_results: int = 5
@app.post("/rag/search")
def rag_search(q: Query = Body(...)):
# embed query
q_emb = client.embeddings.create(
model="text-embedding-3-small",
input=q.query
).data[0].embedding
# retrieve matches
results = collection.query(query_embeddings=[q_emb], n_results=q.n_results)
docs = results["documents"][0]
metas = results["metadatas"][0]
context = "\n\n".join(docs)
# synthesize short answer
answer = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "Answer based only on the context below. Be concise and practical."},
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {q.query}"}
]
).choices[0].message.content
return {
"query": q.query,
"answer": answer,
"results": [
{"source": m.get("source"), "title": m.get("title"),
"role": m.get("role"), "excerpt": d[:300]}
for d, m in zip(docs, metas)
]
}
@app.get("/health")
def health():
return {"status": "ok", "collection_count": collection.count()}