Files
project-lyra/rag/chatlogs/lyra/0035_10_27-neomem_update.json
2025-11-16 03:17:32 -05:00

201 lines
74 KiB
JSON
Raw Blame History

This file contains invisible Unicode characters
This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
{
"title": "10/27-neomem update",
"messages": [
{
"role": "user",
"content": "So i want to redo nvgram. the name is too close to NVGRAM and i think it'll get confusing. Lets rename it and then reimplement it and make sure we get the docker-compose.yml updated as well as the .env"
},
{
"role": "tool",
"content": "All the files uploaded by the user have been fully loaded. Searching won't provide additional information."
},
{
"role": "assistant",
"content": "Perfect — we can definitely redo **NVGRAM** under a cleaner name and re-implement it fresh. \nLets go step-by-step so its smooth and not confusing.\n\n---\n\n### 🧩 Step 1 — Pick a New Name\nIt should be short, unique, and descriptive. Here are a few quick ideas:\n\n| Option | Meaning | Notes |\n|--------|----------|-------|\n| **LyraMem** | Lyra Memory | clean + direct |\n| **AstraMem** | “star memory” | fits Lyra constellation theme |\n| **NeuroVault** | memory vault vibe | a bit dramatic but catchy |\n| **GraphMind** | emphasizes Neo4j graph side | clear technical focus |\n| **Mnemonic** | memory term | elegant but common word |\n| **EchoMem** | memories as echoes | poetic + distinct |\n\nWhich one do you like? \nOnce you pick, Ill guide you through:\n\n1. Renaming folders, service names, and environment variables \n2. Updating `docker-compose.yml` and `.env` \n3. Adjusting `README` and `CHANGELOG` entries \n\nOnly a few lines per step — no walls of text."
},
{
"role": "user",
"content": "what structure in the brain houses ltm?"
},
{
"role": "assistant",
"content": "Good question — the **hippocampus** is the key structure that consolidates **short-term** memories into **long-term memory (LTM)**. \n\nHeres the quick breakdown: \n- 🧠 **Hippocampus** — acts like the brains “save button”; converts new experiences into lasting memories. \n- 🏗️ **Neocortex** — where those long-term memories are actually *stored* once consolidated (distributed across sensory and association areas). \n- ⚙️ **Amygdala** — tags emotional importance, strengthening some LTMs (especially fear or reward memories). \n- 🌀 **Basal ganglia & cerebellum** — handle procedural or motor LTMs (like riding a bike). \n\nSo: **hippocampus → neocortex** pipeline = the core long-term memory system. \n\nWould you like me to tie that into how we might name or model the new NVGRAM replacement after that biological structure?"
},
{
"role": "user",
"content": "so how about something like NeoMem? or just lyra-neo? suggestions?"
},
{
"role": "assistant",
"content": "Excellent direction — tying it to the **hippocampus → neocortex** idea fits perfectly with Lyras architecture. \nHeres how those two options stack up, plus a few close relatives:\n\n| Name | Meaning / Inspiration | Pros | Cons |\n|------|------------------------|------|------|\n| **NeoMem** | “Neocortical Memory” | Short, readable, implies evolution beyond NVGRAM | Slightly generic — could overlap with other “neo” tech names |\n| **Lyra-Neo** | “Lyras Neocortex” | Ties clearly to Lyra brand; fits your multi-module “brain” metaphor | Sounds more like an *umbrella module* (reasoning layer) than a DB |\n| **NeoVault** | “New vault of memories” | Feels strong + secure | A bit dramatic, might not fit technical naming style |\n| **Cortexa** | From *cortex* | Distinct and modern, sounds like a sub-brain system | Slightly sci-fi if you want a grounded tone |\n| **Lyra-Mem** | Simple and clear | Perfect continuity with Lyra branding | Doesnt signal Neo4j/vector sophistication |\n| **Graphene** | Wordplay on “graph” + “gene” | Cool technical vibe | Might confuse with actual graphene material |\n| **Cortex-Mem** | Self-descriptive and modular | Matches your cortex VM theme | Maybe too literal |\n\nIf the goal is to position it as **Lyras long-term memory store**, Id recommend:\n\n> ⭐ **NeoMem** — short, smart, and conceptually grounded (neocortex = long-term store). \n> You could still prefix it internally as `lyra-neomem` for repo and service names.\n\n---\n\nWould you like to go with **NeoMem**, or do you want a couple of slightly more poetic/spiritual options (like “EchoVault” or “Mneme,” after the Greek muse of memory) before we lock it in?"
},
{
"role": "user",
"content": "lets do neomem"
},
{
"role": "assistant",
"content": "Perfect — **NeoMem** it is. 🧠 \nIts clean, fits the biological metaphor, and is easy to remember and type.\n\nLets start small and tidy:\n\n---\n\n### 🪜 Step 1 — Rename Core References\nWell phase out **NVGRAM** → **NEOMEM** everywhere, but well do it in order.\n\n1. **Folder / Repo rename** \n If your existing project folder is `~/lyra-nvgram/`, rename it:\n ```bash\n mv lyra-nvgram lyra-neomem\n ```\n\n2. **Service name change** \n Inside the new folder, open `docker-compose.nvgram.yml` and change:\n ```yaml\n services:\n nvgram-api:\n ```\n → \n ```yaml\n services:\n neomem-api:\n ```\n And update port/env references to `NEOMEM_API` instead of `NVGRAM_API`.\n\n3. **.env entry** \n Replace:\n ```\n NVGRAM_API=http://nvgram-api:7077\n ```\n with:\n ```\n NEOMEM_API=http://neomem-api:7077\n ```\n\n---\n\nIf youd like, I can show you the exact full `docker-compose.neomem.yml` and `.env` replacements next so it all builds cleanly. \nWant to go ahead with that?"
},
{
"role": "user",
"content": "services:\n neomem-postgres:\n image: ankane/pgvector:v0.5.1\n container_name: neomem-postgres\n restart: unless-stopped\n environment:\n POSTGRES_USER: neomem\n POSTGRES_PASSWORD: neomempass\n POSTGRES_DB: neomem\n volumes:\n - postgres_data:/var/lib/postgresql/data\n ports:\n - \"5432:5432\"\n healthcheck:\n test: [\"CMD-SHELL\", \"pg_isready -U neomem -d neomem || exit 1\"]\n interval: 5s\n timeout: 5s\n retries: 10\n networks:\n - lyra-net\n\n neomem-neo4j:\n image: neo4j:5\n container_name: neomem-neo4j\n restart: unless-stopped\n environment:\n NEO4J_AUTH: neo4j/neomemgraph\n ports:\n - \"7474:7474\"\n - \"7687:7687\"\n volumes:\n - neo4j_data:/data\n healthcheck:\n test: [\"CMD-SHELL\", \"cypher-shell -u neo4j -p neomemgraph 'RETURN 1' || exit 1\"]\n interval: 10s\n timeout: 10s\n retries: 10\n networks:\n - lyra-net\n\n neomem:\n build: .\n image: lyra-neomem:latest\n container_name: neomem-api\n restart: unless-stopped\n ports:\n - \"7077:7077\"\n env_file:\n - .env.neomem\n volumes:\n - ./neomem_history:/app/history\n depends_on:\n neomem-postgres:\n condition: service_healthy\n neomem-neo4j:\n condition: service_healthy\n networks:\n - lyra-net\n\nvolumes:\n postgres_data:\n neo4j_data:\n\nnetworks:\n lyra-net:\n external: true\n\n# 🧠 NVGRAM API\nNVGRAM_API_KEY=supersecrettoken123\nNVGRAM_HISTORY_DB=postgresql://nvgram:nvgrampass@nvgram-postgres:5432/nvgram\n\n# 🗄️ Postgres\nPOSTGRES_USER=nvgram\nPOSTGRES_PASSWORD=nvgrampass\nPOSTGRES_DB=nvgram\nPOSTGRES_HOST=nvgram-postgres\n\n# 🔗 Neo4j (for NVGRAM)\nNEO4J_URI=bolt://nvgram-neo4j:7687\nNEO4J_USERNAME=neo4j\nNEO4J_PASSWORD=nvgramgraph\nNEO4J_AUTH=neo4j/nvgramgraph\n\n\n# 🤖 Local reasoning model (Ollama on 3090)\nLLM_PROVIDER=ollama\nLLM_MODEL=qwen2.5:7b-instruct-q4_K_M\nLLM_API_BASE=http://10.0.0.3:11434\n\nOLLAMA_HOST=http://10.0.0.3:11434\nOLLAMA_BASE_URL=http://10.0.0.3:11434\n\n# 🔡 Embeddings (OpenAI)\nEMBEDDER_PROVIDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-proj-lRX1sd6.......\n\nI renamed it to docker-compose.yml and just .env. Got rid of all the weird shit. I want to clean this up "
},
{
"role": "assistant",
"content": "Nice work — thats already a clean base. \nLets tidy it up into a fully standardized and readable version. \n\nWell: \n✅ unify naming (`neomem-*` across services and env) \n✅ remove old `NVGRAM_` leftovers \n✅ group `.env` logically \n✅ keep comments minimal but useful \n\n---\n\n### ✅ Clean Final — `docker-compose.yml`\n```yaml\nversion: \"3.9\"\n\nservices:\n neomem-postgres:\n image: ankane/pgvector:v0.5.1\n container_name: neomem-postgres\n restart: unless-stopped\n environment:\n POSTGRES_USER: neomem\n POSTGRES_PASSWORD: neomempass\n POSTGRES_DB: neomem\n volumes:\n - postgres_data:/var/lib/postgresql/data\n ports:\n - \"5432:5432\"\n healthcheck:\n test: [\"CMD-SHELL\", \"pg_isready -U neomem -d neomem || exit 1\"]\n interval: 5s\n timeout: 5s\n retries: 10\n networks:\n - lyra-net\n\n neomem-neo4j:\n image: neo4j:5\n container_name: neomem-neo4j\n restart: unless-stopped\n environment:\n NEO4J_AUTH: neo4j/neomemgraph\n ports:\n - \"7474:7474\"\n - \"7687:7687\"\n volumes:\n - neo4j_data:/data\n healthcheck:\n test: [\"CMD-SHELL\", \"cypher-shell -u neo4j -p neomemgraph 'RETURN 1' || exit 1\"]\n interval: 10s\n timeout: 10s\n retries: 10\n networks:\n - lyra-net\n\n neomem-api:\n build: .\n image: lyra-neomem:latest\n container_name: neomem-api\n restart: unless-stopped\n ports:\n - \"7077:7077\"\n env_file:\n - .env\n volumes:\n - ./neomem_history:/app/history\n depends_on:\n neomem-postgres:\n condition: service_healthy\n neomem-neo4j:\n condition: service_healthy\n networks:\n - lyra-net\n\nvolumes:\n postgres_data:\n neo4j_data:\n\nnetworks:\n lyra-net:\n external: true\n```\n\n---\n\n### ✅ Clean Final — `.env`\n```bash\n# 🌌 NeoMem API\nNEOMEM_API=http://neomem-api:7077\nNEOMEM_API_KEY=supersecrettoken123\nNEOMEM_HISTORY_DB=postgresql://neomem:neomempass@neomem-postgres:5432/neomem\n\n# 🗄️ Postgres\nPOSTGRES_USER=neomem\nPOSTGRES_PASSWORD=neomempass\nPOSTGRES_DB=neomem\nPOSTGRES_HOST=neomem-postgres\n\n# 🔗 Neo4j\nNEO4J_URI=bolt://neomem-neo4j:7687\nNEO4J_USERNAME=neo4j\nNEO4J_PASSWORD=neomemgraph\nNEO4J_AUTH=neo4j/neomemgraph\n\n# 🤖 Local reasoning model (Ollama on 3090)\nLLM_PROVIDER=ollama\nLLM_MODEL=qwen2.5:7b-instruct-q4_K_M\nLLM_API_BASE=http://10.0.0.3:11434\n\n# 🔡 Embeddings (OpenAI)\nEMBEDDER_PROVIDER=openai\nEMBEDDER_MODEL=text-embedding-3-small\nOPENAI_API_KEY=sk-proj-lRX1sd6.......\n```\n\n---\n\nWould you like me to give you the **updated README.md snippet** next (the part that describes NeoMems setup + curl test), so your documentation matches this new name too?"
},
{
"role": "user",
"content": "when im trying to delete stuff via WINSCP i get permission denied a lot. I want to remove a hand full of folders that are old and wont go away"
},
{
"role": "assistant",
"content": "Yeah — thats a classic Linux file permission thing, especially inside Docker folders. \nLets fix it step-by-step without breaking anything. \n\n---\n\n### 🧹 Step 1 — Check ownership\nOpen an SSH terminal into the same machine where youre using WinSCP and run:\n```bash\nls -l /path/to/the/folder\n```\nYoull probably see something like:\n```\ndrwxr-xr-x 3 root root 4096 Oct 27 23:00 old_folder\n```\nIf the owner is `root`, WinSCP (running as your normal user) cant delete it.\n\n---\n\n### 🧰 Step 2 — Delete as root via SSH\nThe safest way is to delete it from the terminal instead of WinSCP:\n```bash\nsudo rm -rf /path/to/old_folder\n```\n\nIf its inside a Docker volume path like `/var/lib/docker/volumes/...`, stop containers first:\n```bash\ndocker compose down\nsudo rm -rf /var/lib/docker/volumes/your_volume_name\n```\n\n---\n\n### 🪄 Step 3 — Optional: make WinSCP use sudo\nIf you want to delete from WinSCPs GUI instead:\n1. In WinSCP, go to **Preferences → Panels → Remote** \n2. Check **“Execute sudo on startup”** \n3. Reconnect to your server \n4. Itll now run file commands with elevated permissions (youll be prompted for your password once)\n\n---\n\nIf you tell me roughly *where* those stubborn folders are (e.g., `/home/user/lyra-old`, `/var/lib/docker/volumes`, or `/opt/...`), I can give you the safest exact command to nuke them without touching live containers."
},
{
"role": "user",
"content": "awesome that cleaned a lot up "
},
{
"role": "assistant",
"content": "Perfect 😎 nice work — thats one of those small but deeply satisfying cleanups. \n\nNow that the clutters gone and weve got a clean **NeoMem** base, want to go ahead and update the `README.md` to reflect the rename (so everything lines up with the new compose + env)? \n\nItll just be a short section — “Setup,” “Verify,” and “Integration Notes” rewritten for **NeoMem**."
},
{
"role": "user",
"content": "can i just go through the relay server.js and find and replace all the nvgram to neomem ?"
},
{
"role": "assistant",
"content": "Yep 👍 thats exactly the right move — a **find-and-replace** sweep is all it takes, *as long as were careful about variable names*. \n\nHeres how to do it safely:\n\n---\n\n### 🪜 Step-by-step\n\n1. **Open the file** \n ```bash\n nano server.js\n ```\n or open it in VS Code / Notepad++ — whichever editor you like.\n\n2. **Search and replace (case-sensitive):** \n Replace these everywhere:\n\n | Old | New |\n |------|------|\n | `NVGRAM` | `NEOMEM` |\n | `nvgram` | `neomem` |\n\n (This covers both environment variables and URLs like `http://nvgram-api:7077`.)\n\n3. **Dont touch unrelated variables** \n For example, skip anything like `ENVIRONMENT` or `CONVNGRAM` (rare, but check before saving).\n\n4. **Save & test**\n ```bash\n docker compose down\n docker compose up --build -d\n ```\n Then verify it connects:\n ```bash\n curl http://localhost:7077/health\n ```\n\n You should see something like:\n ```json\n {\"status\":\"ok\",\"service\":\"NeoMem API\",\"version\":\"0.1.0\"}\n ```\n\n---\n\nIf you want, I can show you the exact **expected lines in server.js** that reference `nvgram` (so you can confirm you got them all) — want me to list those targets?"
},
{
"role": "user",
"content": "import logging\nimport os\nfrom typing import Any, Dict, List, Optional\n\nfrom dotenv import load_dotenv\nfrom fastapi import FastAPI, HTTPException\nfrom fastapi.responses import JSONResponse, RedirectResponse\nfrom pydantic import BaseModel, Field\n\nfrom neomem import Memory\n\nlogging.basicConfig(level=logging.INFO, format=\"%(asctime)s - %(levelname)s - %(message)s\")\n\n# Load environment variables\nload_dotenv()\n\n\nPOSTGRES_HOST = os.environ.get(\"POSTGRES_HOST\", \"postgres\")\nPOSTGRES_PORT = os.environ.get(\"POSTGRES_PORT\", \"5432\")\nPOSTGRES_DB = os.environ.get(\"POSTGRES_DB\", \"postgres\")\nPOSTGRES_USER = os.environ.get(\"POSTGRES_USER\", \"postgres\")\nPOSTGRES_PASSWORD = os.environ.get(\"POSTGRES_PASSWORD\", \"postgres\")\nPOSTGRES_COLLECTION_NAME = os.environ.get(\"POSTGRES_COLLECTION_NAME\", \"memories\")\n\nNEO4J_URI = os.environ.get(\"NEO4J_URI\", \"bolt://neo4j:7687\")\nNEO4J_USERNAME = os.environ.get(\"NEO4J_USERNAME\", \"neo4j\")\nNEO4J_PASSWORD = os.environ.get(\"NEO4J_PASSWORD\", \"mem0graph\")\n\nMEMGRAPH_URI = os.environ.get(\"MEMGRAPH_URI\", \"bolt://localhost:7687\")\nMEMGRAPH_USERNAME = os.environ.get(\"MEMGRAPH_USERNAME\", \"memgraph\")\nMEMGRAPH_PASSWORD = os.environ.get(\"MEMGRAPH_PASSWORD\", \"mem0graph\")\n\nOPENAI_API_KEY = os.environ.get(\"OPENAI_API_KEY\")\nHISTORY_DB_PATH = os.environ.get(\"HISTORY_DB_PATH\", \"/app/history/history.db\")\n\n# Embedder settings (switchable by .env)\nEMBEDDER_PROVIDER = os.environ.get(\"EMBEDDER_PROVIDER\", \"openai\")\nEMBEDDER_MODEL = os.environ.get(\"EMBEDDER_MODEL\", \"text-embedding-3-small\")\nOLLAMA_HOST = os.environ.get(\"OLLAMA_HOST\") # only used if provider=ollama\n\n\nDEFAULT_CONFIG = {\n \"version\": \"v1.1\",\n \"vector_store\": {\n \"provider\": \"pgvector\",\n \"config\": {\n \"host\": POSTGRES_HOST,\n \"port\": int(POSTGRES_PORT),\n \"dbname\": POSTGRES_DB,\n \"user\": POSTGRES_USER,\n \"password\": POSTGRES_PASSWORD,\n \"collection_name\": POSTGRES_COLLECTION_NAME,\n },\n },\n \"graph_store\": {\n \"provider\": \"neo4j\",\n \"config\": {\"url\": NEO4J_URI, \"username\": NEO4J_USERNAME, \"password\": NEO4J_PASSWORD},\n },\n \"llm\": {\n \"provider\": os.getenv(\"LLM_PROVIDER\", \"ollama\"),\n \"config\": {\n \"model\": os.getenv(\"LLM_MODEL\", \"qwen2.5:7b-instruct-q4_K_M\"),\n \"ollama_base_url\": os.getenv(\"LLM_API_BASE\") or os.getenv(\"OLLAMA_BASE_URL\"),\n \"temperature\": float(os.getenv(\"LLM_TEMPERATURE\", \"0.2\")),\n },\n },\n \"embedder\": {\n \"provider\": EMBEDDER_PROVIDER,\n \"config\": {\n \"model\": EMBEDDER_MODEL,\n \"embedding_dims\": int(os.environ.get(\"EMBEDDING_DIMS\", \"1536\")),\n \"openai_base_url\": os.getenv(\"OPENAI_BASE_URL\"),\n \"api_key\": OPENAI_API_KEY\n },\n },\n \"history_db_path\": HISTORY_DB_PATH,\n}\n\nimport time\nfrom fastapi import FastAPI\n\n# single app instance\napp = FastAPI(\n title=\"NEOMEM REST APIs\",\n description=\"A REST API for managing and searching memories for your AI Agents and Apps.\",\n version=\"0.2.0\",\n)\n\nstart_time = time.time()\n\n@app.get(\"/health\")\ndef health_check():\n uptime = round(time.time() - start_time, 1)\n return {\n \"status\": \"ok\",\n \"service\": \"NEOMEM\",\n \"version\": DEFAULT_CONFIG.get(\"version\", \"unknown\"),\n \"uptime_seconds\": uptime,\n \"message\": \"API reachable\"\n }\n\nprint(\">>> Embedder config:\", DEFAULT_CONFIG[\"embedder\"])\n\n# Wait for Neo4j connection before creating Memory instance\nfor attempt in range(10): # try for about 50 seconds total\n try:\n MEMORY_INSTANCE = Memory.from_config(DEFAULT_CONFIG)\n print(f\"✅ Connected to Neo4j on attempt {attempt + 1}\")\n break\n except Exception as e:\n print(f\"⏳ Waiting for Neo4j (attempt {attempt + 1}/10): {e}\")\n time.sleep(5)\nelse:\n raise RuntimeError(\"❌ Could not connect to Neo4j after 10 attempts\")\n\nclass Message(BaseModel):\n role: str = Field(..., description=\"Role of the message (user or assistant).\")\n content: str = Field(..., description=\"Message content.\")\n\n\nclass MemoryCreate(BaseModel):\n messages: List[Message] = Field(..., description=\"List of messages to store.\")\n user_id: Optional[str] = None\n agent_id: Optional[str] = None\n run_id: Optional[str] = None\n metadata: Optional[Dict[str, Any]] = None\n\n\nclass SearchRequest(BaseModel):\n query: str = Field(..., description=\"Search query.\")\n user_id: Optional[str] = None\n run_id: Optional[str] = None\n agent_id: Optional[str] = None\n filters: Optional[Dict[str, Any]] = None\n\n\n@app.post(\"/configure\", summary=\"Configure Mem0\")\ndef set_config(config: Dict[str, Any]):\n \"\"\"Set memory configuration.\"\"\"\n global MEMORY_INSTANCE\n MEMORY_INSTANCE = Memory.from_config(config)\n return {\"message\": \"Configuration set successfully\"}\n\n\n@app.post(\"/memories\", summary=\"Create memories\")\ndef add_memory(memory_create: MemoryCreate):\n \"\"\"Store new memories.\"\"\"\n if not any([memory_create.user_id, memory_create.agent_id, memory_create.run_id]):\n raise HTTPException(status_code=400, detail=\"At least one identifier (user_id, agent_id, run_id) is required.\")\n\n params = {k: v for k, v in memory_create.model_dump().items() if v is not None and k != \"messages\"}\n try:\n response = MEMORY_INSTANCE.add(messages=[m.model_dump() for m in memory_create.messages], **params)\n return JSONResponse(content=response)\n except Exception as e:\n logging.exception(\"Error in add_memory:\") # This will log the full traceback\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.get(\"/memories\", summary=\"Get memories\")\ndef get_all_memories(\n user_id: Optional[str] = None,\n run_id: Optional[str] = None,\n agent_id: Optional[str] = None,\n):\n \"\"\"Retrieve stored memories.\"\"\"\n if not any([user_id, run_id, agent_id]):\n raise HTTPException(status_code=400, detail=\"At least one identifier is required.\")\n try:\n params = {\n k: v for k, v in {\"user_id\": user_id, \"run_id\": run_id, \"agent_id\": agent_id}.items() if v is not None\n }\n return MEMORY_INSTANCE.get_all(**params)\n except Exception as e:\n logging.exception(\"Error in get_all_memories:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.get(\"/memories/{memory_id}\", summary=\"Get a memory\")\ndef get_memory(memory_id: str):\n \"\"\"Retrieve a specific memory by ID.\"\"\"\n try:\n return MEMORY_INSTANCE.get(memory_id)\n except Exception as e:\n logging.exception(\"Error in get_memory:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.post(\"/search\", summary=\"Search memories\")\ndef search_memories(search_req: SearchRequest):\n \"\"\"Search for memories based on a query.\"\"\"\n try:\n params = {k: v for k, v in search_req.model_dump().items() if v is not None and k != \"query\"}\n return MEMORY_INSTANCE.search(query=search_req.query, **params)\n except Exception as e:\n logging.exception(\"Error in search_memories:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.put(\"/memories/{memory_id}\", summary=\"Update a memory\")\ndef update_memory(memory_id: str, updated_memory: Dict[str, Any]):\n \"\"\"Update an existing memory with new content.\n \n Args:\n memory_id (str): ID of the memory to update\n updated_memory (str): New content to update the memory with\n \n Returns:\n dict: Success message indicating the memory was updated\n \"\"\"\n try:\n return MEMORY_INSTANCE.update(memory_id=memory_id, data=updated_memory)\n except Exception as e:\n logging.exception(\"Error in update_memory:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.get(\"/memories/{memory_id}/history\", summary=\"Get memory history\")\ndef memory_history(memory_id: str):\n \"\"\"Retrieve memory history.\"\"\"\n try:\n return MEMORY_INSTANCE.history(memory_id=memory_id)\n except Exception as e:\n logging.exception(\"Error in memory_history:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.delete(\"/memories/{memory_id}\", summary=\"Delete a memory\")\ndef delete_memory(memory_id: str):\n \"\"\"Delete a specific memory by ID.\"\"\"\n try:\n MEMORY_INSTANCE.delete(memory_id=memory_id)\n return {\"message\": \"Memory deleted successfully\"}\n except Exception as e:\n logging.exception(\"Error in delete_memory:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.delete(\"/memories\", summary=\"Delete all memories\")\ndef delete_all_memories(\n user_id: Optional[str] = None,\n run_id: Optional[str] = None,\n agent_id: Optional[str] = None,\n):\n \"\"\"Delete all memories for a given identifier.\"\"\"\n if not any([user_id, run_id, agent_id]):\n raise HTTPException(status_code=400, detail=\"At least one identifier is required.\")\n try:\n params = {\n k: v for k, v in {\"user_id\": user_id, \"run_id\": run_id, \"agent_id\": agent_id}.items() if v is not None\n }\n MEMORY_INSTANCE.delete_all(**params)\n return {\"message\": \"All relevant memories deleted\"}\n except Exception as e:\n logging.exception(\"Error in delete_all_memories:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.post(\"/reset\", summary=\"Reset all memories\")\ndef reset_memory():\n \"\"\"Completely reset stored memories.\"\"\"\n try:\n MEMORY_INSTANCE.reset()\n return {\"message\": \"All memories reset\"}\n except Exception as e:\n logging.exception(\"Error in reset_memory:\")\n raise HTTPException(status_code=500, detail=str(e))\n\n\n@app.get(\"/\", summary=\"Redirect to the OpenAPI documentation\", include_in_schema=False)\ndef home():\n \"\"\"Redirect to the OpenAPI documentation.\"\"\"\n return RedirectResponse(url=\"/docs\")\n\nAnything else i need to mess with to get it to work?"
},
{
"role": "assistant",
"content": "That file already looks **really solid** — youve basically completed the rename cleanly. 👏 \nThere are just a couple of **tiny polish items** to make it fully consistent and avoid stray “Mem0” references. \n\nHeres the quick checklist 👇 \n\n---\n\n### ✅ 1. Update the `/configure` route docstring + summary \nRight now it says \n```python\n@app.post(\"/configure\", summary=\"Configure Mem0\")\n```\nChange to: \n```python\n@app.post(\"/configure\", summary=\"Configure NeoMem\")\n```\n\n---\n\n### ✅ 2. Clean up leftover variable defaults\nYou still have some fallback defaults referencing `mem0graph` or `memgraph`:\n```python\nNEO4J_PASSWORD = os.environ.get(\"NEO4J_PASSWORD\", \"mem0graph\")\nMEMGRAPH_PASSWORD = os.environ.get(\"MEMGRAPH_PASSWORD\", \"mem0graph\")\n```\nYou can safely change both to:\n```python\nNEO4J_PASSWORD = os.environ.get(\"NEO4J_PASSWORD\", \"neomemgraph\")\nMEMGRAPH_PASSWORD = os.environ.get(\"MEMGRAPH_PASSWORD\", \"neomemgraph\")\n```\n\n*(That keeps your fallback consistent with your `.env` file.)*\n\n---\n\n### ✅ 3. Verify the import\nYou have:\n```python\nfrom neomem import Memory\n```\nMake sure that your local package folder is actually named `neomem` \n(i.e. `neomem/Memory.py` or `neomem/__init__.py` exists). \nIf it still lives in a folder called `nvgram`, rename that directory to `neomem`.\n\n---\n\n### ✅ 4. Optional cosmetic tweaks\nUpdate the app title and version block:\n```python\napp = FastAPI(\n title=\"NeoMem REST API\",\n description=\"A REST API for managing and searching memories for Lyra.\",\n version=\"0.2.0\",\n)\n```\n\n---\n\n### ✅ 5. Quick test\nOnce thats saved, rebuild and test:\n```bash\ndocker compose down\ndocker compose up --build -d\n```\nThen run:\n```bash\ncurl http://localhost:7077/health\n```\n\nExpected output:\n```json\n{\n \"status\": \"ok\",\n \"service\": \"NEOMEM\",\n \"version\": \"v1.1\",\n \"uptime_seconds\": 2.5,\n \"message\": \"API reachable\"\n}\n```\n\n---\n\nIf that returns clean JSON and you see \n`✅ Connected to Neo4j on attempt 1` \nin the logs — youre **fully migrated and live**. \n\nWould you like a one-line README “Quick Start” snippet next (so you can verify NeoMem in a curl test and document the rename)?"
},
{
"role": "user",
"content": "how do i prune and remove orphans when i do docker compose down?"
},
{
"role": "assistant",
"content": "Excellent timing — this is one of the best habits you can build while iterating on Docker stacks like Lyra. 👇 \n\n---\n\n### 🧹 **To remove everything tied to your compose stack (containers + networks + volumes):**\n\n```bash\ndocker compose down --volumes --remove-orphans\n```\n\n**Breakdown:**\n- `--volumes` → deletes named & anonymous volumes created by this stack (cleans Postgres + Neo4j data if you want a fresh start)\n- `--remove-orphans` → removes any containers still running from old service names (like your retired `nvgram-*`)\n\n---\n\n### 🧽 **Optional deep clean (if you want to reclaim disk space):**\nAfter the stack is down:\n```bash\ndocker system prune -af --volumes\n```\nThat nukes:\n- Unused images \n- Stopped containers \n- Dangling volumes \n- Build cache \n\n*(The `-a` flag removes **all** unused images, not just dangling ones — safe if you rebuild often.)*\n\n---\n\n### ⚠️ Quick Safety Rule\nIf you want to reset **just NeoMems databases** but not everything:\n```bash\ndocker compose down\ndocker volume rm lyra-neomem_postgres_data lyra-neomem_neo4j_data\n```\n\nThen bring it back up fresh:\n```bash\ndocker compose up -d --build\n```\n\n---\n\nWould you like me to show a short “refresh.sh” one-liner script that does a full down → prune → rebuild cleanly for NeoMem? Its handy for testing new versions."
},
{
"role": "user",
"content": "serversdown@lyra-core:~/project-lyra/lyra-neomem$ docker ps\nCONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES\ncb6160893070 nginx:alpine \"/docker-entrypoint.…\" 42 minutes ago Up 42 minutes 0.0.0.0:8081->80/tcp, [::]:8081->80/tcp lyra-ui\nc26bea89d873 lyra-core-relay \"docker-entrypoint.s…\" 42 minutes ago Up 42 minutes 0.0.0.0:7078->7078/tcp, [::]:7078->7078/tcp relay\n878e18003139 lyra-nvgram:latest \"uvicorn nvgram.main…\" 43 minutes ago Up 43 minutes 0.0.0.0:7077->7077/tcp, [::]:7077->7077/tcp nvgram-api\nf9f8e8e4c766 ankane/pgvector:v0.5.1 \"docker-entrypoint.s…\" 43 minutes ago Up 43 minutes (healthy) 0.0.0.0:5432->5432/tcp, [::]:5432->5432/tcp nvgram-postgres\ne83651c1166d neo4j:5 \"tini -g -- /startup…\" 43 minutes ago Up 43 minutes (healthy) 0.0.0.0:7474->7474/tcp, [::]:7474->7474/tcp, 7473/tcp, 0.0.0.0:7687->7687/tcp, [::]:7687->7687/tcp nvgram-neo4j\n2b1c42d64f77 lyra-core-persona-sidecar \"docker-entrypoint.s…\" 3 days ago Up 11 hours 0.0.0.0:7080->7080/tcp, [::]:7080->7080/tcp persona-sidecar\nserversdown@lyra-core:~/project-lyra/lyra-neomem$ docker compose down\nWARN[0000] Warning: No resource found to remove for project \"lyra-neomem\"."
},
{
"role": "assistant",
"content": "Ah — that warning tells us Docker doesnt see your running `nvgram-*` containers as part of the **current compose project** (`lyra-neomem`). \n\nThats totally normal when you renamed things — Docker Compose tracks containers by the **`project name`** embedded in labels (from your folder name or `-p` flag). \n\nHeres how to clean it up properly 👇 \n\n---\n\n### 🧩 Step 1 — Check the current project names\nRun:\n```bash\ndocker ps --format '{{.Names}}'\n```\nYoull see things like:\n```\nnvgram-api\nnvgram-postgres\nnvgram-neo4j\nrelay\nlyra-ui\npersona-sidecar\n```\n\nThose `nvgram-*` ones belong to the **old stack**, not `lyra-neomem`.\n\n---\n\n### 🧹 Step 2 — Stop and remove the old ones manually\n```bash\ndocker stop nvgram-api nvgram-postgres nvgram-neo4j\ndocker rm nvgram-api nvgram-postgres nvgram-neo4j\n```\n\nYou can double-check:\n```bash\ndocker ps -a | grep nvgram\n```\nIf nothing shows, theyre gone. ✅\n\n---\n\n### 🧽 Step 3 — Optionally remove the old volumes\nTo start with clean databases:\n```bash\ndocker volume rm lyra-core_nvgram-postgres_data lyra-core_nvgram-neo4j_data 2>/dev/null || true\n```\n(If you get “no such volume,” thats fine — its already gone.)\n\n---\n\n### 🏗️ Step 4 — Rebuild the new NeoMem stack\nFrom inside your `lyra-neomem/` directory:\n```bash\ndocker compose up -d --build\n```\nThen confirm:\n```bash\ndocker ps\n```\nYou should now see:\n```\nneomem-api\nneomem-postgres\nneomem-neo4j\n```\n\n---\n\nWould you like me to show a short script (`refresh-neomem.sh`) that automates all those cleanup steps in one go for future upgrades?"
},
{
"role": "user",
"content": "\nserversdown@lyra-core:~/project-lyra/lyra-neomem$ docker ps\nCONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES\nd2fe5a5869c2 lyra-neomem:latest \"uvicorn neomem.main…\" 59 seconds ago Up 45 seconds 0.0.0.0:7077->7077/tcp, [::]:7077->7077/tcp neomem-api\ndb5e8a68ac62 ankane/pgvector:v0.5.1 \"docker-entrypoint.s…\" 59 seconds ago Up 58 seconds (healthy) 0.0.0.0:5432->5432/tcp, [::]:5432->5432/tcp neomem-postgres\n19a70fbc4fd4 neo4j:5 \"tini -g -- /startup…\" 59 seconds ago Up 58 seconds (healthy) 0.0.0.0:7474->7474/tcp, [::]:7474->7474/tcp, 7473/tcp, 0.0.0.0:7687->7687/tcp, [::]:7687->7687/tcp neomem-neo4j\ncb6160893070 nginx:alpine \"/docker-entrypoint.…\" 46 minutes ago Up 46 minutes 0.0.0.0:8081->80/tcp, [::]:8081->80/tcp lyra-ui\nc26bea89d873 lyra-core-relay \"docker-entrypoint.s…\" 46 minutes ago Up 46 minutes 0.0.0.0:7078->7078/tcp, [::]:7078->7078/tcp relay\nserversdown@lyra-core:~/project-lyra/lyra-neomem$\n\nLooks correct to me"
},
{
"role": "assistant",
"content": "Yep — thats a perfect lineup ✅ \n\nYouve got: \n- **neomem-api** → running cleanly on 7077 \n- **neomem-postgres** → healthy \n- **neomem-neo4j** → healthy \n- Relay + UI still connected on 7078 / 8081 \n\nEverythings named correctly, no orphaned `nvgram-*` containers, and the health checks are all green. \n\nNext quick sanity check (just to be thorough): \n```bash\ncurl http://localhost:7077/health\n```\nIf you see a JSON block like \n```json\n{\"status\":\"ok\",\"service\":\"NEOMEM\",\"version\":\"v1.1\",\"message\":\"API reachable\"}\n``` \nyoure officially **fully migrated and live** under NeoMem. 🎉 \n\nWould you like me to show how to re-point Relays `.env` so it now calls `NEOMEM_API` instead of the old `NVGRAM_API`?"
},
{
"role": "user",
"content": "already got that"
},
{
"role": "assistant",
"content": "Perfect 👌 — then youre 100 % migrated. \n\n✅ Containers renamed and healthy \n✅ `.env` and Compose cleaned \n✅ Relay pointed to `NEOMEM_API` \n✅ Old NVGRAM stack removed \n\nYouve basically completed the fork—**NeoMem v0.1.0** is live. \nNext natural step (if you feel like polishing) would be adding a `CHANGELOG.md` entry and updating the READMEs “Setup” + “Verify” sections so anyone cloning the repo later sees `neomem` instead of `nvgram`. \n\nWant me to draft that short changelog block for this release?"
},
{
"role": "user",
"content": "serversdown@lyra-core:~/project-lyra/lyra-neomem$ docker logs neomem-api -f\n>>> Embedder config: {'provider': 'openai', 'config': {'model': 'text-embedding-3-small', 'embedding_dims': 1536, 'openai_base_url': None, 'api_key': 'sk-proj-AAAAAAAAA...'}}\n2025-10-28 06:03:03,007 - INFO - Using psycopg (psycopg3) with ConnectionPool for PostgreSQL connections\n2025-10-28 06:03:03,526 - INFO - Inserting 1 vectors into collection mem0migrations\n✅ Connected to Neo4j on attempt 1\nINFO: Started server process [1]\nINFO: Waiting for application startup.\nINFO: Application startup complete.\nINFO: Uvicorn running on http://0.0.0.0:7077 (Press CTRL+C to quit)\n2025-10-28 06:06:20,435 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:20,436 - INFO - Total existing memories: 0\n2025-10-28 06:06:20,849 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:22,414 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:24,971 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:25,627 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:26,421 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:59,030 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:06:59,030 - INFO - Total existing memories: 0\n2025-10-28 06:06:59,157 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:00,328 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:01,649 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:01,844 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:02,063 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:20,529 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:20,943 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:20,943 - INFO - Total existing memories: 0\n2025-10-28 06:07:22,038 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:26,041 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:26,321 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:27,377 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:46,315 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:46,315 - INFO - Total existing memories: 0\n2025-10-28 06:07:46,472 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:48,172 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:50,016 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:50,245 - INFO - HTTP Request: POST http://10.0.0.3:11434/api/chat \"HTTP/1.1 200 OK\"\n2025-10-28 06:07:50,888 - INFO - HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n\n\nSo this all looks good, but relay is still reporting no new memories"
},
{
"role": "assistant",
"content": "Yep — your NeoMem logs look **perfect** (healthy connections, successful OpenAI + Ollama calls, vector inserts working). \nIf Relay says “no new memories,” that means the connection *from Relay → NeoMem* is alive but the **POST /memories** calls arent actually persisting. \n\nLets check a few quick suspects in order 👇 \n\n---\n\n### 🧩 Step 1 — Verify Relays `.env`\nMake sure you really swapped **every** instance of the old var:\n\n```bash\nNEOMEM_API=http://neomem-api:7077\n```\n\nand **removed** any leftover line like:\n```\nNVGRAM_API=http://nvgram-api:7077\n```\n\nRelay only reads the first match it finds — if both exist, it may still be pointing to the old one.\n\n---\n\n### 🧠 Step 2 — Confirm Relay can reach NeoMem directly\nFrom inside the Relay container:\n```bash\ndocker exec -it relay curl -s http://neomem-api:7077/health\n```\n✅ You should see:\n```json\n{\"status\":\"ok\",\"service\":\"NEOMEM\", ...}\n```\nIf that works, the network path is good.\n\n---\n\n### 🧾 Step 3 — Manually test NeoMem write\nFrom the **host**, run:\n```bash\ncurl -X POST http://localhost:7077/memories \\\n -H \"Content-Type: application/json\" \\\n -d '{\n \"messages\": [{\"role\": \"user\", \"content\": \"test memory\"}],\n \"user_id\": \"brian\"\n }'\n```\nIf you get a 200 with an `id`, the API is storing fine (so the issues on Relays side).\n\n---\n\n### ⚙️ Step 4 — Check Relay logs\n```bash\ndocker logs relay -f | grep mem\n```\nLook for:\n- `POST /memories -> 200` ✅ \n- or errors like `relay error Error: memAdd failed` ❌ \n\nIf you see the latter, it might still be calling the old `NVGRAM_API` internally — theres a small block in `server.js` that defines the base URL like:\n\n```js\nconst MEM_API = process.env.NVGRAM_API || \"http://nvgram-api:7077\";\n```\n\n👉 Change that line to:\n\n```js\nconst MEM_API = process.env.NEOMEM_API || \"http://neomem-api:7077\";\n```\n\nThen rebuild Relay:\n```bash\ndocker compose up -d --build relay\n```\n\n---\n\n### 🧹 Step 5 — Retest memory loop\n1. Send a message through your Lyra UI \n2. Watch `docker logs neomem-api -f` \n → You should see `POST /memories -> 200` \n3. Watch `docker logs relay -f` \n → You should see “memories added successfully” or similar log lines \n\n---\n\nIf you paste the relevant few lines from your `relay/server.js` around where it defines the memory API URL, I can confirm whether its still wired to the old NVGRAM name. Want to show that snippet?"
},
{
"role": "user",
"content": "\n📨 Sent exchange to Intake summarizer\n🛰 Incoming request. Session: Test1\n🧠 Cortex annotations: {}\nmem.add took 5939ms\n😴 No memories found\nmem.search took 858ms\n\n==== Injected Prompt ====\n[\n {\n \"role\": \"system\",\n \"content\": \"Relevant memories:\\n\"\n },\n {\n \"role\": \"user\",\n \"content\": \"testing neomem how are you\"\n }\n]\n=========================\n\n📨 Sent exchange to Intake summarizer\n\nIts def connecting and sending "
},
{
"role": "assistant",
"content": "Perfect — that log tells us **Relay is definitely talking to NeoMem** and getting 200s back (since you see `mem.add took 5939ms` ✅). \nThe only piece still off is that `mem.search` returns empty (`No memories found`). \nThat usually means NeoMem is writing fine, but when Relay searches again, its querying under a **different identifier set** — so the search endpoint isnt matching anything.\n\nLets confirm with two tiny checks:\n\n---\n\n### 🧾 Step 1 — See whats actually stored\nRun this on the host (or from inside the `neomem-api` container):\n```bash\ncurl -s -X GET \"http://localhost:7077/memories?user_id=Test1\" | jq\n```\n*(replace `Test1` with whatever Relay logs show for the Session or user_id)* \n\nIf you get `[]`, then Relays POST is using a different `user_id` / `agent_id` combo than its later search. \n\nIf you see data returned, then the search logic in Relay is filtering by the wrong field (e.g., `sessionId` instead of `user_id`).\n\n---\n\n### 🧩 Step 2 — Check how Relay builds the add/search payloads\nOpen `relay/server.js` and look for something like:\n```js\nawait mem.add({\n messages,\n sessionId: session_id,\n user_id: ...\n})\n```\nand later:\n```js\nawait mem.search({\n query: user_message,\n sessionId: session_id\n})\n```\n\n👉 If the `add()` uses `sessionId` but the `search()` uses `user_id` (or vice-versa), NeoMem will treat them as unrelated documents. \nThe easy fix is to make both use the same identifier key — usually `user_id`.\n\nExample consistent pattern:\n```js\nconst memoryPayload = {\n messages,\n user_id: session_id, // unify key\n}\n```\nand\n```js\nawait mem.search({ query, user_id: session_id })\n```\n\n---\n\n### ✅ If both match but still empty\nTry forcing a broader search:\n```bash\ncurl -s -X POST http://localhost:7077/search \\\n -H \"Content-Type: application/json\" \\\n -d '{\"query\":\"testing neomem how are you\"}' | jq\n```\nIf that returns hits, then its purely a filtering mismatch.\n\n---\n\nWant to paste the small parts of `server.js` that contain `mem.add(` and `mem.search(`? \nI can show you exactly what to align so Relay starts pulling the new memories back in its context."
},
{
"role": "user",
"content": "serversdown@lyra-core:~/project-lyra/lyra-core$ curl -s -X GET \"http://localhost:7077/memories?user_id=Test1\" | jq\n{\n \"results\": [],\n \"relations\": []\n}\nserversdown@lyra-core:~/project-lyra/lyra-core$"
},
{
"role": "assistant",
"content": "Got it — that confirms NeoMem isnt storing the memory under the `user_id=Test1` key, even though Relay is calling `/memories`. \nSo the POST is going through fine, but the payload probably doesnt include `user_id`, or its using a different field name (`sessionId`, `session_id`, etc.) that NeoMem doesnt recognize. \n\nLets pinpoint it fast 👇 \n\n---\n\n### 🧩 Step 1 — Check what Relay is actually sending\nRun this from the **Relay container**, so you can capture the outbound JSON payload:\n\n```bash\ndocker logs relay -f | grep \"POST /memories\"\n```\n\nIf the logs dont show body details, you can temporarily add a quick log right above the `mem.add(...)` call in `server.js`:\n\n```js\nconsole.log(\"🧠 ADD PAYLOAD:\", {\n messages,\n user_id,\n agent_id,\n run_id,\n session_id\n});\n```\n\nThen restart Relay (`docker compose up -d --build relay`) and send another test message.\n\nThis will show exactly which keys are being sent to NeoMem.\n\n---\n\n### 🧠 Step 2 — Why this matters\nNeoMem expects one of:\n```json\n{\n \"messages\": [...],\n \"user_id\": \"something\"\n}\n```\nIf Relay sends:\n```json\n{\n \"messages\": [...],\n \"sessionId\": \"something\"\n}\n```\nthen the NeoMem API silently inserts it but with no valid identifier — so it cant be retrieved by `user_id`, `agent_id`, or `run_id`.\n\n---\n\n### 🧰 Step 3 — The quick fix\nOnce you see which key Relay is using, you can just normalize it in Relays memory helper:\n\n**Before:**\n```js\nawait mem.add({\n messages,\n sessionId: session_id\n});\n```\n\n**After:**\n```js\nawait mem.add({\n messages,\n user_id: session_id\n});\n```\n\nAnd same for search:\n```js\nawait mem.search({\n query,\n user_id: session_id\n});\n```\n\n---\n\nWould you like to paste the `mem.add(` and `mem.search(` blocks from Relays `server.js` here? \nIll tell you exactly which line to tweak so your memory loop becomes fully functional."
},
{
"role": "user",
"content": "oh it should be under the user_id=brian i think. Let me check server.js"
},
{
"role": "assistant",
"content": "Exactly — thats the right intuition. 🧠 \n\nNeoMem doesnt really care what the ID *is*, it just has to be **consistent** between `add()` and `search()`. \nSo if your Relay uses: \n\n```js\nuser_id: \"brian\"\n```\n\nthen every `search()` should also include:\n```js\nuser_id: \"brian\"\n```\n\nIf instead your `add()` uses `user_id: \"brian\"` but your `search()` uses `user_id: session_id` or something like `run_id: \"Test1\"`, youll get exactly what you saw: \n> Total existing memories: 0 \n\neven though data is sitting in the DB under a different tag.\n\n---\n\nHeres what to look for in **Relays `server.js`**: \n\n```js\n// somewhere in mem.add\nawait mem.add({\n messages,\n user_id: process.env.DEFAULT_USER || \"brian\", // should match\n ...\n});\n\n// and in mem.search\nawait mem.search({\n query,\n user_id: process.env.DEFAULT_USER || \"brian\", // same key\n});\n```\n\nYou can hard-code `\"brian\"` just to verify the loop works — once confirmed, we can re-abstract it to pull from the active session.\n\n---\n\nWhen you find those two blocks, paste them here and Ill mark the exact edits so you can test in one go."
},
{
"role": "user",
"content": "import express from \"express\";\nimport dotenv from \"dotenv\";\nimport cors from \"cors\";\nimport { annotateWithCortex } from \"./cortex.js\";\n\ndotenv.config();\n\nconst app = express();\napp.use(cors());\napp.use(express.json());\n\n// Cache and normalize env flags/values once\nconst {\n NEOMEM_API,\n MEM0_API_KEY,\n OPENAI_API_KEY,\n OLLAMA_URL,\n PERSONA_URL,\n CORTEX_ENABLED,\n PORT: PORT_ENV,\n DEBUG_PROMPT,\n} = process.env;\n\nconst PORT = Number(PORT_ENV) || 7078;\nconst cortexEnabled = String(CORTEX_ENABLED).toLowerCase() === \"true\";\nconst debugPrompt = String(DEBUG_PROMPT).toLowerCase() === \"true\";\n\n// Basic env validation warnings (non-fatal)\nif (!NEOMEM_API || !MEM0_API_KEY) {\n console.warn(\"⚠️ NeoMem configuration missing: NEOMEM_API or MEM0_API_KEY not set.\");\n}\n\n/* ------------------------------\n Helpers for Mem0 REST API\n--------------------------------*/\n// Small helper for fetch with timeout + JSON + error detail\nasync function fetchJSON(url, options = {}, timeoutMs = 30000) {\n const controller = new AbortController();\n const t = setTimeout(() => controller.abort(), timeoutMs);\n try {\n const resp = await fetch(url, { ...options, signal: controller.signal });\n const text = await resp.text();\n const parsed = text ? JSON.parse(text) : null;\n if (!resp.ok) {\n const msg = parsed?.error || parsed?.message || text || resp.statusText;\n throw new Error(`${resp.status} ${msg}`);\n }\n return parsed;\n } finally {\n clearTimeout(t);\n }\n}\n\nasync function memAdd(content, userId, sessionId, cortexData) {\n const url = `${NEOMEM_API}/memories`;\n const payload = {\n messages: [{ role: \"user\", content }],\n user_id: userId,\n run_id: sessionId,\n metadata: { source: \"relay\", cortex: cortexData },\n };\n return fetchJSON(url, {\n method: \"POST\",\n headers: {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${MEM0_API_KEY}`,\n },\n body: JSON.stringify(payload),\n });\n}\n\nasync function memSearch(query, userId, sessionId) {\n const url = `${NEOMEM_API}/search`;\n const payload = { query, user_id: userId, run_id: sessionId };\n return fetchJSON(url, {\n method: \"POST\",\n headers: {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${MEM0_API_KEY}`,\n },\n body: JSON.stringify(payload),\n });\n}\n\n/* ------------------------------\n Utility to time spans\n--------------------------------*/\nasync function span(name, fn) {\n const start = Date.now();\n try {\n return await fn();\n } finally {\n console.log(`${name} took ${Date.now() - start}ms`);\n }\n}\n\n/* ------------------------------\n Healthcheck\n--------------------------------*/\napp.get(\"/_health\", (req, res) => {\n res.json({ ok: true, time: new Date().toISOString() });\n});\n\n/* ------------------------------\n Chat completion endpoint\n--------------------------------*/\napp.post(\"/v1/chat/completions\", async (req, res) => {\n try {\n const { model, messages, sessionId: clientSessionId } = req.body || {};\n if (!Array.isArray(messages) || !messages.length) {\n return res.status(400).json({ error: \"invalid_messages\" });\n }\n if (!model || typeof model !== \"string\") {\n return res.status(400).json({ error: \"invalid_model\" });\n }\n\n const sessionId = clientSessionId || \"default\";\n const userId = \"brian\"; // fixed for now\n\n console.log(`🛰️ Incoming request. Session: ${sessionId}`);\n\n // Find last user message efficiently\n const lastUserMsg = [...messages].reverse().find(m => m.role === \"user\")?.content;\n if (!lastUserMsg) {\n return res.status(400).json({ error: \"no_user_message\" });\n }\n\n // 1. Cortex (optional) + mem.add\n let cortexData = {};\n if (cortexEnabled) {\n try {\n cortexData = await annotateWithCortex(lastUserMsg);\n } catch (err) {\n console.warn(\"⚠️ Cortex disabled or unreachable, skipping.\");\n cortexData = {};\n }\n }\n\n await span(\"mem.add\", async () => {\n console.log(\"🧠 Cortex annotations:\", cortexData);\n if (NEOMEM_API && MEM0_API_KEY) {\n await memAdd(lastUserMsg, userId, sessionId, cortexData);\n }\n });\n\n\n // 2. Search memories\n let memorySnippets = [];\n await span(\"mem.search\", async () => {\n if (NEOMEM_API && MEM0_API_KEY) {\n try {\n const { results } = await memSearch(lastUserMsg, userId, sessionId);\n if (results?.length) {\n console.log(`📚 Mem0 hits: ${results.length}`);\n results.forEach((r, i) =>\n console.log(` ${i + 1}) ${r.memory} (score ${Number(r.score).toFixed(3)})`)\n );\n memorySnippets = results.map((r, i) => `${i + 1}) ${r.memory}`);\n } else {\n console.log(\"😴 No memories found\");\n }\n } catch (e) {\n console.warn(\"⚠️ mem.search failed:\", e.message);\n }\n }\n });\n\n // 3. Fetch persona\n/* let personaText = \"Persona: Lyra 🤖 friendly, concise, poker-savvy.\";\n await span(\"persona.fetch\", async () => {\n try {\n if (PERSONA_URL) {\n const data = await fetchJSON(PERSONA_URL);\n if (data?.persona) {\n const name = data.persona.name ?? \"Lyra\";\n const style = data.persona.style ?? \"friendly, concise\";\n const protocols = Array.isArray(data.persona.protocols) ? data.persona.protocols.join(\", \") : \"\";\n personaText = `Persona: ${name} 🤖 ${style}. Protocols: ${protocols}`.trim();\n }\n }\n } catch (err) {\n console.error(\"💥 persona.fetch failed\", err);\n }\n }); */\n\n // 4. Build final messages\n const injectedMessages = [\n // { role: \"system\", content: personaText }, persona sidecar removed temp //\n { role: \"system\", content: `Relevant memories:\\n${memorySnippets.join(\"\\n\")}` },\n ...messages,\n ];\n\n if (debugPrompt) {\n console.log(\"\\n==== Injected Prompt ====\");\n console.log(JSON.stringify(injectedMessages, null, 2));\n console.log(\"=========================\\n\");\n }\n\n // 5. Call LLM (OpenAI or Ollama)\n const isOllama = model.startsWith(\"ollama:\");\n const llmUrl = isOllama\n ? `${OLLAMA_URL}/api/chat`\n : \"https://api.openai.com/v1/chat/completions\";\n\n const llmHeaders = isOllama\n ? { \"Content-Type\": \"application/json\" }\n : {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${OPENAI_API_KEY}`,\n };\n\n const llmBody = {\n model: isOllama ? model.replace(\"ollama:\", \"\") : model,\n messages: injectedMessages,\n stream: false,\n };\n\n const data = await fetchJSON(llmUrl, {\n method: \"POST\",\n headers: llmHeaders,\n body: JSON.stringify(llmBody),\n });\n\t\n\t\t// 🔄 Forward user↔assistant exchange to Intake summarizer\n\tif (process.env.INTAKE_API_URL) {\n\t try {\n\t\t// Extract assistant reply text\n\t\tconst assistantReply = isOllama\n\t\t ? data?.message?.content\n\t\t : data?.choices?.[0]?.message?.content;\n\n\t\tconst intakePayload = {\n\t\t turns: [\n\t\t\t{ role: \"user\", content: lastUserMsg },\n\t\t\t{ role: \"assistant\", content: assistantReply || \"\" }\n\t\t ]\n\t\t};\n\n\t\tawait fetch(process.env.INTAKE_API_URL, {\n\t\t method: \"POST\",\n\t\t headers: { \"Content-Type\": \"application/json\" },\n\t\t body: JSON.stringify(intakePayload),\n\t\t});\n\n\t\tconsole.log(\"📨 Sent exchange to Intake summarizer\");\n\t } catch (err) {\n\t\tconsole.warn(\"⚠️ Intake post failed:\", err.message);\n\t }\n\t}\n\n\n if (isOllama) {\n res.json({\n id: \"ollama-\" + Date.now(),\n object: \"chat.completion\",\n created: Math.floor(Date.now() / 1000),\n model,\n choices: [\n {\n index: 0,\n message: data?.message || { role: \"assistant\", content: \"\" },\n finish_reason: \"stop\",\n },\n ],\n });\n } else {\n res.json(data);\n }\n\n } catch (err) {\n console.error(\"💥 relay error\", err);\n res.status(500).json({ error: \"relay_failed\", detail: err.message });\n }\n});\n\n/* ------------------------------\n Start server\n--------------------------------*/\napp.listen(PORT, () => {\n console.log(`Relay listening on port ${PORT}`);\n});\n\nHeres the whole thing i dunno where to look"
},
{
"role": "assistant",
"content": "Perfect — this is a great base, and I can see exactly whats happening. \nYour Relay → NeoMem calls are wired correctly, but the **issue** is simple: the identifier fields (`user_id`, `run_id`) are being sent, but NeoMem **only indexes one primary identifier at a time** — and Relays search adds an extra `run_id`, which filters the results to zero. \n\nHeres the exact fix 👇 \n\n---\n\n### 🧠 Whats happening\n\n**Your current payloads:**\n\n#### `memAdd`\n```js\nconst payload = {\n messages: [{ role: \"user\", content }],\n user_id: userId, // ✅ \"brian\"\n run_id: sessionId, // ⚠️ \"Test1\"\n metadata: { source: \"relay\", cortex: cortexData },\n};\n```\n\n#### `memSearch`\n```js\nconst payload = {\n query,\n user_id: userId, // ✅ \"brian\"\n run_id: sessionId, // ⚠️ \"Test1\"\n};\n```\n\n→ When you call `/search`, NeoMem applies **both filters** (`user_id=brian` AND `run_id=Test1`). \nBut your earlier memories were stored with *only one of those keys actually populated internally*, so the strict match returns nothing (`Total existing memories: 0`). \n\n---\n\n### ✅ The fix\n\nUse **only one identifier** for both adding and searching — simplest is `user_id`. \nComment out or remove the `run_id` line in both helper functions:\n\n#### 🩹 Edit 1 — `memAdd`\n```js\nconst payload = {\n messages: [{ role: \"user\", content }],\n user_id: userId,\n // run_id: sessionId, ← remove or comment out\n metadata: { source: \"relay\", cortex: cortexData },\n};\n```\n\n#### 🩹 Edit 2 — `memSearch`\n```js\nconst payload = {\n query,\n user_id: userId,\n // run_id: sessionId, ← remove or comment out\n};\n```\n\nThen rebuild:\n```bash\ndocker compose up -d --build relay\n```\n\n---\n\n### 🧾 Test flow\n\n1. Open your Lyra UI and send: \n > “Testing NeoMem again after fix”\n\n2. Watch NeoMem logs: \n ```\n POST /memories -> 200\n ```\n\n3. Send a second message: \n > “What did I just say about testing?”\n\n Now NeoMem logs should show:\n ```\n POST /search -> 200\n Found 1 result(s)\n ```\n\n4. Youll see the retrieved memory injected under `Relevant memories:` 🎯\n\n---\n\nThis keeps Relays context loop stable, since all sessions (for now) share the same `user_id=brian`. \nOnce we add multi-user sessions later, we can bring `run_id` back with proper per-session recall logic.\n\nWant me to show the one-liner diff block (so you can patch both helpers fast)?"
},
{
"role": "user",
"content": "Should we just get rid of session ID? i thought it could be useful to make searching quicker?"
},
{
"role": "assistant",
"content": "Thats a great question — and youre absolutely right to think about **session_id** as a potentially useful performance + organization key. \n\nHeres the quick reality check on how it plays with NeoMem 👇 \n\n---\n\n### 🧩 What `sessionId` (or `run_id`) *can* be good for\n- **Scoping searches** → e.g., “only look at context from this current conversation.”\n- **Bulk cleanup** → you can `DELETE /memories?run_id=XYZ` to clear all context from one session.\n- **Debugging / audit** → helps you trace what came from what chat.\n\nSo yes — its conceptually useful.\n\n---\n\n### 🧠 Why it broke your current search\nRight now, NeoMem treats `user_id`, `run_id`, and `agent_id` as **filters combined with AND**, not as alternate keys. \nSo if you send both `user_id=brian` and `run_id=Test1`, it only returns results that match *both*. \nSince early writes may not have had both fields, you get zero hits.\n\n---\n\n### ✅ Two clean options going forward\n\n#### **Option A (Simple & Safe — for now)**\nDrop `run_id` from both `add` and `search`. \n→ Everything works immediately. \n→ Search still fast because its vector-indexed (pgvector handles scale).\n\n```js\n// use only user_id\nconst payload = { query, user_id: userId };\n```\n\nLater we can add `run_id`-scoped searches intentionally, like:\n```js\nmem.search({ query, run_id: activeSession })\n```\n\n#### **Option B (Scoped sessions — future enhancement)**\nKeep writing both:\n```js\n{ user_id: \"brian\", run_id: \"Test1\" }\n```\n…but make Relays `search()` choose one:\n- “brian” for global memory recall \n- “Test1” for ephemeral session recall \n\nThatd look like:\n```js\nawait memSearch(lastUserMsg, userId, cortexEnabled ? sessionId : null)\n```\nand then NeoMem can decide `if run_id is None → skip filter`.\n\nWe can implement that logic later in NeoMems `/search` endpoint with a simple:\n```python\nif not run_id:\n # dont include run_id filter\n```\n\n---\n\nFor now, Id recommend **Option A** — just comment it out and get everything stable. \nOnce youve got consistent saves + recalls, we can reintroduce session scoping as a layer-two optimization. \n\nWant me to show exactly how that optional “skip run_id if null” tweak would look inside NeoMems `search_memories` endpoint when youre ready to re-enable it?"
},
{
"role": "user",
"content": "yeah lets just comment it out or get rid of it for now"
},
{
"role": "assistant",
"content": "Perfect — thats the clean, stable call for now 👍 \n\nHeres the exact **minimal patch** to make Relays memory loop fully consistent with NeoMem and stop filtering issues.\n\n---\n\n### 🩹 Edit these two helper functions in `server.js`\n\n#### **1⃣ memAdd()**\n```js\nasync function memAdd(content, userId, sessionId, cortexData) {\n const url = `${NEOMEM_API}/memories`;\n const payload = {\n messages: [{ role: \"user\", content }],\n user_id: userId,\n // run_id: sessionId, ← remove for now\n metadata: { source: \"relay\", cortex: cortexData },\n };\n return fetchJSON(url, {\n method: \"POST\",\n headers: {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${MEM0_API_KEY}`,\n },\n body: JSON.stringify(payload),\n });\n}\n```\n\n#### **2⃣ memSearch()**\n```js\nasync function memSearch(query, userId, sessionId) {\n const url = `${NEOMEM_API}/search`;\n const payload = {\n query,\n user_id: userId,\n // run_id: sessionId, ← remove for now\n };\n return fetchJSON(url, {\n method: \"POST\",\n headers: {\n \"Content-Type\": \"application/json\",\n Authorization: `Bearer ${MEM0_API_KEY}`,\n },\n body: JSON.stringify(payload),\n });\n}\n```\n\n---\n\n### 🧱 Then rebuild and restart:\n```bash\ndocker compose up -d --build relay\n```\n\n---\n\n### 🧪 Test\n1. Send a message: “testing neomem again” \n2. Then send another: “what did I just say?” \n3. Watch logs:\n - `mem.add took ... ms`\n - `mem.search took ... ms`\n - Should now show: \n ```\n 📚 Mem0 hits: 1\n 1) testing neomem again (score 0.93)\n ```\n\n---\n\nOnce confirmed, we can later reintroduce session scoping (Option B) safely inside NeoMems API logic, so it doesnt block global recall. \n\nWould you like me to prep a tiny changelog entry for this (so we record “Removed run_id scoping to fix empty search results”)?"
},
{
"role": "user",
"content": "okay it looks like it is working now. I guess now the big question is, should relay send directly to neomem? or should intake summarize then send the memories to neomem? or both?"
},
{
"role": "assistant",
"content": "Excellent — glad to hear the memory loops working cleanly now ✅ \n\nYouve hit one of the most important architecture questions in Lyras “brain flow,” and theres not just one right answer — it depends on how you want **short-term vs long-term** memory to behave. \nLets break it down simply: \n\n---\n\n### 🧠 Option A — **Relay → NeoMem directly** *(what youre doing now)* \n**Flow:** \nUser → Relay → NeoMem \n\n**Pros:** \n- Fast and simple (one hop). \n- You capture every exchange raw — nothing ever lost. \n- NeoMem can later be refined or rewritten asynchronously. \n\n**Cons:** \n- Lots of noisy or redundant memories. \n- Search space grows faster (more vectors, more duplicates). \n- Cortex/Intake summarization doesnt shape what gets stored — everything goes in. \n\n**Best for:** testing, low-traffic personal deployments, or when you want a “black-box recorder.”\n\n---\n\n### 🔁 Option B — **Relay → Intake → NeoMem (summarized path)** \n**Flow:** \nUser → Relay → Intake (summarize) → NeoMem \n\n**Pros:** \n- Intake condenses chat turns into concise summaries before long-term storage. \n- NeoMem stays smaller and higher-signal. \n- Easier to train later (summaries already structured). \n\n**Cons:** \n- You lose the exact original phrasing unless you store both raw + summary. \n- Slight delay or dependency on Intakes availability. \n\n**Best for:** production memory loops, or when you want high-quality, curated memories. \n\n---\n\n### ⚙️ Option C — **Hybrid (best of both)** \n**Flow:** \nUser → Relay \n→ (1) store raw immediately in NeoMem \n→ (2) forward same exchange to Intake \n→ Intake periodically posts refined summaries back to NeoMem (“rewrite/update”) \n\nThat mirrors how the human brain consolidates: *hippocampus (raw events)* → *neocortex (refined memory)*. \nYou already have the plumbing for this — Relay is forwarding to Intake after each turn (`📨 Sent exchange to Intake summarizer`), so Intake could just post its summaries back via `/memories` or `/update`.\n\n---\n\n### 💡 Recommended next step\nKeep **Option A + C hybrid** for now: \n- Relay keeps writing raw messages (guarantees nothing lost). \n- Intake starts writing summarized versions back later, using either a “summary” metadata tag or a rewrite call. \n\nOnce were confident Intake is stable, we can flip to pure summarized-first (Option B) if it proves cleaner.\n\n---\n\nIf youd like, I can show a short diagram + example Intake route (`POST /summarize → POST /memories`) so you can see exactly how that hybrid flow would look in code. \nWant that next?"
},
{
"role": "user",
"content": "so if it matters, neomem does its own sort of filtering and duplication checking logic and reasoning, which is why it does so many request to an AI API"
},
{
"role": "assistant",
"content": "Ah — thats *hugely* relevant 👏 \n\nThat means NeoMem isnt just a dumb vector store — its already doing **semantic reasoning, deduplication, and selective retention** on incoming memories. \nIn other words, it already behaves a lot like an *executive hippocampus* — deciding *whats worth keeping* and *how to store it*. \n\nThat changes the calculus quite a bit: \n\n---\n\n### 🧠 With NeoMems internal reasoning layer in play:\n\n#### ✅ Relay → NeoMem directly \n...is actually **the correct primary path.**\n\nBecause: \n- NeoMem already analyzes, filters, and merges related content on insert. \n- Duplicates or low-value entries are auto-ignored. \n- NeoMems own reasoning cycle (those API calls to OpenAI/Ollama) essentially *is* the “summarization” layer. \n\nSo you dont need Intake summarizing first — that would just summarize, then NeoMem would summarize *again* (double compression, lost nuance). \n\n---\n\n### 🔁 Role for Intake in this new setup\nWith NeoMem reasoning on ingest, **Intake** should switch focus from *summarizing for storage* → *summarizing for context continuity.*\n\nThink of it like this:\n\n| Layer | Function |\n|-------|-----------|\n| **Relay → NeoMem** | Commit “episodic memories” (raw but filtered) |\n| **Intake** | Maintain **short-term summaries** for current chat (for context window injection) |\n| **NeoMem** | Handle **long-term semantic storage**, deduplication, and reflection |\n\nSo instead of sending summaries *to* NeoMem, Intakes job becomes keeping Relay aware of whats happening *this session* (a “working memory” loop).\n\n---\n\n### ⚙️ Hybrid evolution (down the road)\nEventually, you can still let Intake do **periodic reflective updates**, e.g.:\n\n> Every 50 exchanges → summarize session → send one “summary memory” to NeoMem with metadata `{type: \"summary\"}` \n\nThat gives NeoMem an abstract overview without replacing its per-message recall logic.\n\n---\n\n### 💡 TL;DR Recommendation\nKeep:\n```\nRelay → NeoMem ✅ (primary)\nRelay → Intake ✅ (for short-term summaries only)\n```\nand skip Intake → NeoMem for now, since NeoMems reasoning makes that redundant.\n\n---\n\nWould you like me to sketch a quick diagram (or pseudo-flow) showing this refined “Lyra memory triage” — short-term, long-term, and reasoning layers — so we can lock that architecture in visually?"
},
{
"role": "user",
"content": "I like the hybrid evolution idea. "
},
{
"role": "assistant",
"content": "Perfect — thats the sweet spot. 🧠 \n\nYoure essentially building Lyras **dual-memory loop** — a structure very similar to how biological systems work (short-term consolidation → long-term abstraction → later reflection). \n\nHeres the clean mental model for your hybrid evolution 👇 \n\n---\n\n## 🌿 Lyra Memory Architecture v1.5 — “Hybrid Consolidation Loop”\n\n### 🧩 1. **Immediate Path (Fast + Raw)**\n**Relay → NeoMem**\n\n- Every user ↔ assistant exchange is written straight to NeoMem. \n- NeoMem runs its *reasoning + deduplication + relevance scoring* at ingest. \n- Output: a detailed, timestamped record of every conversation turn. \n- Equivalent to: **hippocampus recording sensory input.**\n\n```plaintext\nUser → Relay → NeoMem (/memories)\n ↳ AI filter, merge, store\n```\n\n---\n\n### ⚙️ 2. **Working Memory Path (Short-Term Awareness)**\n**Relay → Intake**\n\n- Relay sends the same exchanges to Intake. \n- Intake doesnt store permanently — it maintains rolling summaries (like “last 10 turns”). \n- Output: a short contextual digest Relay can re-inject into prompts. \n- Equivalent to: **prefrontal cortex short-term working memory.**\n\n```plaintext\nUser → Relay → Intake → back to Relay\n```\n\n---\n\n### 🧬 3. **Consolidation Path (Reflective Summarization)**\n**Intake → NeoMem (periodic summaries)**\n\n- Every N exchanges or on “quiet periods,” Intake generates session summaries. \n- Posts them back to NeoMem via `/memories` with special metadata, e.g.:\n ```json\n {\n \"messages\": [{\"role\": \"assistant\", \"content\": \"Session summary...\"}],\n \"user_id\": \"brian\",\n \"metadata\": { \"type\": \"summary\", \"source\": \"intake\" }\n }\n ```\n- NeoMem stores these as high-level reflections alongside raw entries. \n- Equivalent to: **sleep consolidation / reflection.**\n\n```plaintext\nIntake → NeoMem (summary insertion)\n```\n\n---\n\n### 🌗 Resulting Behavior\n- **Fast learning** from NeoMems reasoning on raw messages. \n- **Context continuity** from Intakes rolling summaries. \n- **Scalable retention** from periodic high-level consolidation. \n- **No duplication**, since NeoMem auto-filters and merges. \n\n---\n\n### 🔮 Future Enhancement Ideas\n- Add a `/reflect` route in NeoMem → triggers its own “dream cycle” (re-summarizes clusters). \n- Use metadata flags (`type: \"raw\"`, `type: \"summary\"`, `type: \"reflection\"`) for easy filtering. \n- Add confidence scoring to prioritize memory recall. \n- Optionally allow Cortex to “query NeoMem” during reasoning cycles.\n\n---\n\nWould you like me to diagram that flow visually next (boxes/arrows style, easy to drop into your README)?"
},
{
"role": "user",
"content": "ok so i think we have neomem working properly now. I guess we should get back to working on relay and improving it"
},
{
"role": "assistant",
"content": "Perfect — NeoMem is solid, so now we can safely shift gears to Relay again. ⚙️ \n\nBefore we dive back in, lets just align on **what Relays role is right now vs where were taking it**, so we pick the right next improvements.\n\n---\n\n### 🧩 **Current Relay (v0.3.1 baseline)**\n**Purpose:** Message router and orchestrator. \n**Flow:**\n```\nUI ↔ Relay ↔ LLMs (OpenAI/Ollama)\n ↳ NeoMem (memory add/search)\n ↳ Intake (summary)\n```\n\n✅ Working features:\n- OpenAI & Ollama backend switching \n- Memory add/search loop (NeoMem) \n- Basic Cortex annotation (optional) \n- Persona sidecar (currently commented out) \n- Intake forwarder for summarization \n- Debug logging & injected prompt preview \n\n---\n\n### 🚀 **Next Upgrade Phases**\n\n**Phase 1 — Stability & UX**\n- [ ] Clean up environment variable handling (clear error messages if any service missing) \n- [ ] Add proper healthcheck routes for each submodule (NeoMem, Intake, Cortex, Persona) \n- [ ] Add structured logs (`INFO`, `WARN`, `ERROR` with timestamps) \n- [ ] Improve response structure to clients (standard JSON schema) \n\n**Phase 2 — Smart Routing**\n- [ ] Make Relay dynamically choose which LLM to use (OpenAI vs Ollama vs Cortex) \n- [ ] Add configurable routing rules in `.env` or `relay.config.json` \n - Example: `SALIENCE_MODEL=qwen2` → small model for classification \n - Example: `REASONING_MODEL=ollama:mythomax` → heavy model for reasoning \n\n**Phase 3 — Personality & Context**\n- [ ] Re-enable Persona Sidecar with fallback logic (default persona if sidecar unreachable) \n- [ ] Inject Intakes rolling summary into the prompt dynamically \n- [ ] Add “session recall” — load relevant NeoMem memories + recent Intake summary per chat \n\n**Phase 4 — Observability / Control**\n- [ ] Add `/metrics` endpoint for live span times (LLM latency, mem.add/search times, etc.) \n- [ ] Add optional web dashboard (small UI card showing which modules are connected & healthy)\n\n---\n\nTo move smoothly: \nwould you like to start with **Phase 1 (stability & logging cleanup)** first — or jump right into **Phase 3 (personality/context injection)** where things get more interesting?"
}
]
}