Files
project-lyra/cortex/router.py
2025-12-20 04:15:22 -05:00

462 lines
17 KiB
Python

# router.py
import os
import logging
from fastapi import APIRouter
from pydantic import BaseModel
from reasoning.reasoning import reason_check
from reasoning.reflection import reflect_notes
from reasoning.refine import refine_answer
from persona.speak import speak
from persona.identity import load_identity
from context import collect_context, update_last_assistant_message
from intake.intake import add_exchange_internal
from autonomy.monologue.monologue import InnerMonologue
from autonomy.self.state import load_self_state
# -------------------------------------------------------------------
# Setup
# -------------------------------------------------------------------
LOG_DETAIL_LEVEL = os.getenv("LOG_DETAIL_LEVEL", "summary").lower()
logger = logging.getLogger(__name__)
# Always set up basic logging
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter(
'%(asctime)s [ROUTER] %(levelname)s: %(message)s',
datefmt='%H:%M:%S'
))
logger.addHandler(console_handler)
cortex_router = APIRouter()
inner_monologue = InnerMonologue()
# -------------------------------------------------------------------
# Models
# -------------------------------------------------------------------
class ReasonRequest(BaseModel):
session_id: str
user_prompt: str
temperature: float | None = None
# -------------------------------------------------------------------
# /reason endpoint
# -------------------------------------------------------------------
@cortex_router.post("/reason")
async def run_reason(req: ReasonRequest):
from datetime import datetime
pipeline_start = datetime.now()
stage_timings = {}
# Show pipeline start in detailed/verbose mode
if LOG_DETAIL_LEVEL in ["detailed", "verbose"]:
logger.info(f"\n{'='*100}")
logger.info(f"🚀 PIPELINE START | Session: {req.session_id} | {datetime.now().strftime('%H:%M:%S.%f')[:-3]}")
logger.info(f"{'='*100}")
logger.info(f"📝 User: {req.user_prompt[:150]}...")
logger.info(f"{'-'*100}\n")
# ----------------------------------------------------------------
# STAGE 0 — Context
# ----------------------------------------------------------------
stage_start = datetime.now()
context_state = await collect_context(req.session_id, req.user_prompt)
stage_timings["context"] = (datetime.now() - stage_start).total_seconds() * 1000
# ----------------------------------------------------------------
# STAGE 0.5 — Identity
# ----------------------------------------------------------------
stage_start = datetime.now()
identity_block = load_identity(req.session_id)
stage_timings["identity"] = (datetime.now() - stage_start).total_seconds() * 1000
# ----------------------------------------------------------------
# STAGE 0.6 — Inner Monologue (observer-only)
# ----------------------------------------------------------------
stage_start = datetime.now()
inner_result = None
try:
self_state = load_self_state()
mono_context = {
"user_message": req.user_prompt,
"session_id": req.session_id,
"self_state": self_state,
"context_summary": context_state,
}
inner_result = await inner_monologue.process(mono_context)
logger.info(f"🧠 Monologue | {inner_result.get('intent', 'unknown')} | Tone: {inner_result.get('tone', 'neutral')}")
# Store in context for downstream use
context_state["monologue"] = inner_result
except Exception as e:
logger.warning(f"⚠️ Monologue failed: {e}")
stage_timings["monologue"] = (datetime.now() - stage_start).total_seconds() * 1000
# ----------------------------------------------------------------
# STAGE 0.7 — Executive Planning (conditional)
# ----------------------------------------------------------------
stage_start = datetime.now()
executive_plan = None
if inner_result and inner_result.get("consult_executive"):
try:
from autonomy.executive.planner import plan_execution
executive_plan = await plan_execution(
user_prompt=req.user_prompt,
intent=inner_result.get("intent", "unknown"),
context_state=context_state,
identity_block=identity_block
)
logger.info(f"🎯 Executive plan: {executive_plan.get('summary', 'N/A')[:80]}...")
except Exception as e:
logger.warning(f"⚠️ Executive planning failed: {e}")
executive_plan = None
stage_timings["executive"] = (datetime.now() - stage_start).total_seconds() * 1000
# ----------------------------------------------------------------
# STAGE 0.8 — Autonomous Tool Invocation
# ----------------------------------------------------------------
stage_start = datetime.now()
tool_results = None
autonomous_enabled = os.getenv("ENABLE_AUTONOMOUS_TOOLS", "true").lower() == "true"
tool_confidence_threshold = float(os.getenv("AUTONOMOUS_TOOL_CONFIDENCE_THRESHOLD", "0.6"))
if autonomous_enabled and inner_result:
try:
from autonomy.tools.decision_engine import ToolDecisionEngine
from autonomy.tools.orchestrator import ToolOrchestrator
# Analyze which tools to invoke
decision_engine = ToolDecisionEngine()
tool_decision = await decision_engine.analyze_tool_needs(
user_prompt=req.user_prompt,
monologue=inner_result,
context_state=context_state,
available_tools=["RAG", "WEB", "WEATHER", "CODEBRAIN"]
)
# Execute tools if confidence threshold met
if tool_decision["should_invoke_tools"] and tool_decision["confidence"] >= tool_confidence_threshold:
orchestrator = ToolOrchestrator(tool_timeout=30)
tool_results = await orchestrator.execute_tools(
tools_to_invoke=tool_decision["tools_to_invoke"],
context_state=context_state
)
# Format results for context injection
tool_context = orchestrator.format_results_for_context(tool_results)
context_state["autonomous_tool_results"] = tool_context
summary = tool_results.get("execution_summary", {})
logger.info(f"🛠️ Tools executed: {summary.get('successful', [])} succeeded")
else:
logger.info(f"🛠️ No tools invoked (confidence: {tool_decision.get('confidence', 0):.2f})")
except Exception as e:
logger.warning(f"⚠️ Autonomous tool invocation failed: {e}")
if LOG_DETAIL_LEVEL == "verbose":
import traceback
traceback.print_exc()
stage_timings["tools"] = (datetime.now() - stage_start).total_seconds() * 1000
# ----------------------------------------------------------------
# STAGE 1-5 — Core Reasoning Pipeline
# ----------------------------------------------------------------
stage_start = datetime.now()
# Extract intake summary
intake_summary = "(no context available)"
if context_state.get("intake"):
l20 = context_state["intake"].get("L20")
if isinstance(l20, dict):
intake_summary = l20.get("summary", intake_summary)
elif isinstance(l20, str):
intake_summary = l20
# Reflection
try:
reflection = await reflect_notes(intake_summary, identity_block=identity_block)
reflection_notes = reflection.get("notes", [])
except Exception as e:
reflection_notes = []
logger.warning(f"⚠️ Reflection failed: {e}")
stage_timings["reflection"] = (datetime.now() - stage_start).total_seconds() * 1000
# Reasoning (draft)
stage_start = datetime.now()
draft = await reason_check(
req.user_prompt,
identity_block=identity_block,
rag_block=context_state.get("rag", []),
reflection_notes=reflection_notes,
context=context_state,
monologue=inner_result,
executive_plan=executive_plan
)
stage_timings["reasoning"] = (datetime.now() - stage_start).total_seconds() * 1000
# Refinement
stage_start = datetime.now()
result = await refine_answer(
draft_output=draft,
reflection_notes=reflection_notes,
identity_block=identity_block,
rag_block=context_state.get("rag", []),
)
final_neutral = result["final_output"]
stage_timings["refinement"] = (datetime.now() - stage_start).total_seconds() * 1000
# Persona
stage_start = datetime.now()
tone = inner_result.get("tone", "neutral") if inner_result else "neutral"
depth = inner_result.get("depth", "medium") if inner_result else "medium"
persona_answer = await speak(final_neutral, tone=tone, depth=depth)
stage_timings["persona"] = (datetime.now() - stage_start).total_seconds() * 1000
# ----------------------------------------------------------------
# STAGE 6 — Session update
# ----------------------------------------------------------------
update_last_assistant_message(req.session_id, persona_answer)
# ----------------------------------------------------------------
# STAGE 6.5 — Self-state update & Pattern Learning
# ----------------------------------------------------------------
stage_start = datetime.now()
try:
from autonomy.self.analyzer import analyze_and_update_state
await analyze_and_update_state(
monologue=inner_result or {},
user_prompt=req.user_prompt,
response=persona_answer,
context=context_state
)
except Exception as e:
logger.warning(f"⚠️ Self-state update failed: {e}")
try:
from autonomy.learning.pattern_learner import get_pattern_learner
learner = get_pattern_learner()
await learner.learn_from_interaction(
user_prompt=req.user_prompt,
response=persona_answer,
monologue=inner_result or {},
context=context_state
)
except Exception as e:
logger.warning(f"⚠️ Pattern learning failed: {e}")
stage_timings["learning"] = (datetime.now() - stage_start).total_seconds() * 1000
# ----------------------------------------------------------------
# STAGE 7 — Proactive Monitoring & Suggestions
# ----------------------------------------------------------------
stage_start = datetime.now()
proactive_enabled = os.getenv("ENABLE_PROACTIVE_MONITORING", "true").lower() == "true"
proactive_min_priority = float(os.getenv("PROACTIVE_SUGGESTION_MIN_PRIORITY", "0.6"))
if proactive_enabled:
try:
from autonomy.proactive.monitor import get_proactive_monitor
monitor = get_proactive_monitor(min_priority=proactive_min_priority)
self_state = load_self_state()
suggestion = await monitor.analyze_session(
session_id=req.session_id,
context_state=context_state,
self_state=self_state
)
if suggestion:
suggestion_text = monitor.format_suggestion(suggestion)
persona_answer += suggestion_text
logger.info(f"💡 Proactive suggestion: {suggestion['type']} (priority: {suggestion['priority']:.2f})")
except Exception as e:
logger.warning(f"⚠️ Proactive monitoring failed: {e}")
stage_timings["proactive"] = (datetime.now() - stage_start).total_seconds() * 1000
# ----------------------------------------------------------------
# PIPELINE COMPLETE — Summary
# ----------------------------------------------------------------
total_duration = (datetime.now() - pipeline_start).total_seconds() * 1000
# Always show pipeline completion
logger.info(f"\n{'='*100}")
logger.info(f"✨ PIPELINE COMPLETE | Session: {req.session_id} | Total: {total_duration:.0f}ms")
logger.info(f"{'='*100}")
# Show timing breakdown in detailed/verbose mode
if LOG_DETAIL_LEVEL in ["detailed", "verbose"]:
logger.info("⏱️ Stage Timings:")
for stage, duration in stage_timings.items():
pct = (duration / total_duration) * 100 if total_duration > 0 else 0
logger.info(f" {stage:15s}: {duration:6.0f}ms ({pct:5.1f}%)")
logger.info(f"📤 Output: {len(persona_answer)} chars")
logger.info(f"{'='*100}\n")
# ----------------------------------------------------------------
# RETURN
# ----------------------------------------------------------------
return {
"draft": draft,
"neutral": final_neutral,
"persona": persona_answer,
"reflection": reflection_notes,
"session_id": req.session_id,
"context_summary": {
"rag_results": len(context_state.get("rag", [])),
"minutes_since_last": context_state.get("minutes_since_last_msg"),
"message_count": context_state.get("message_count"),
"mode": context_state.get("mode"),
}
}
# -------------------------------------------------------------------
# /simple endpoint - Standard chatbot mode (no reasoning pipeline)
# -------------------------------------------------------------------
@cortex_router.post("/simple")
async def run_simple(req: ReasonRequest):
"""
Standard chatbot mode - bypasses all cortex reasoning pipeline.
Just a simple conversation loop like a typical chatbot.
"""
from datetime import datetime
from llm.llm_router import call_llm
start_time = datetime.now()
logger.info(f"\n{'='*100}")
logger.info(f"💬 SIMPLE MODE | Session: {req.session_id} | {datetime.now().strftime('%H:%M:%S.%f')[:-3]}")
logger.info(f"{'='*100}")
logger.info(f"📝 User: {req.user_prompt[:150]}...")
logger.info(f"{'-'*100}\n")
# Get conversation history from context
context_state = await collect_context(req.session_id, req.user_prompt)
# Build simple conversation history
messages = []
if context_state.get("recent_messages"):
for msg in context_state["recent_messages"]:
messages.append({
"role": msg.get("role", "user"),
"content": msg.get("content", "")
})
# Add current user message
messages.append({
"role": "user",
"content": req.user_prompt
})
# Format messages into a simple prompt for the LLM
conversation = ""
for msg in messages:
role = msg["role"]
content = msg["content"]
if role == "user":
conversation += f"User: {content}\n\n"
elif role == "assistant":
conversation += f"Assistant: {content}\n\n"
conversation += "Assistant: "
# Get backend from env (default to OPENAI for standard mode)
backend = os.getenv("STANDARD_MODE_LLM", "OPENAI")
temperature = req.temperature if req.temperature is not None else 0.7
# Direct LLM call
try:
response = await call_llm(
prompt=conversation,
backend=backend,
temperature=temperature,
max_tokens=2048
)
except Exception as e:
logger.error(f"❌ LLM call failed: {e}")
response = f"Error: {str(e)}"
# Update session with the exchange
try:
update_last_assistant_message(req.session_id, response)
add_exchange_internal({
"session_id": req.session_id,
"role": "user",
"content": req.user_prompt
})
add_exchange_internal({
"session_id": req.session_id,
"role": "assistant",
"content": response
})
except Exception as e:
logger.warning(f"⚠️ Session update failed: {e}")
duration = (datetime.now() - start_time).total_seconds() * 1000
logger.info(f"\n{'='*100}")
logger.info(f"✨ SIMPLE MODE COMPLETE | Session: {req.session_id} | Total: {duration:.0f}ms")
logger.info(f"📤 Output: {len(response)} chars")
logger.info(f"{'='*100}\n")
return {
"draft": response,
"neutral": response,
"persona": response,
"reflection": "",
"session_id": req.session_id,
"context_summary": {
"message_count": len(messages),
"mode": "standard"
}
}
# -------------------------------------------------------------------
# /ingest endpoint (internal)
# -------------------------------------------------------------------
class IngestPayload(BaseModel):
session_id: str
user_msg: str
assistant_msg: str
@cortex_router.post("/ingest")
async def ingest(payload: IngestPayload):
try:
update_last_assistant_message(payload.session_id, payload.assistant_msg)
except Exception as e:
logger.warning(f"[INGEST] Session update failed: {e}")
try:
add_exchange_internal({
"session_id": payload.session_id,
"user_msg": payload.user_msg,
"assistant_msg": payload.assistant_msg,
})
except Exception as e:
logger.warning(f"[INGEST] Intake update failed: {e}")
return {"status": "ok", "session_id": payload.session_id}