Files
project-lyra/cortex/context.py
2025-12-20 02:49:20 -05:00

554 lines
19 KiB
Python

# context.py
"""
Context layer for Cortex reasoning pipeline.
Provides unified context collection from:
- Intake (short-term memory, multilevel summaries L1-L30)
- NeoMem (long-term memory, semantic search)
- Session state (timestamps, messages, mode, mood, active_project)
Maintains per-session state for continuity across conversations.
"""
import os
import logging
from datetime import datetime
from typing import Dict, Any, Optional, List
import httpx
from intake.intake import summarize_context
from neomem_client import NeoMemClient
# -----------------------------
# Configuration
# -----------------------------
NEOMEM_API = os.getenv("NEOMEM_API", "http://neomem-api:8000")
NEOMEM_ENABLED = os.getenv("NEOMEM_ENABLED", "false").lower() == "true"
RELEVANCE_THRESHOLD = float(os.getenv("RELEVANCE_THRESHOLD", "0.4"))
LOG_DETAIL_LEVEL = os.getenv("LOG_DETAIL_LEVEL", "summary").lower()
# Loop detection settings
MAX_MESSAGE_HISTORY = int(os.getenv("MAX_MESSAGE_HISTORY", "100")) # Prevent unbounded growth
SESSION_TTL_HOURS = int(os.getenv("SESSION_TTL_HOURS", "24")) # Auto-expire old sessions
ENABLE_DUPLICATE_DETECTION = os.getenv("ENABLE_DUPLICATE_DETECTION", "true").lower() == "true"
# Tools available for future autonomy features
TOOLS_AVAILABLE = ["RAG", "WEB", "WEATHER", "CODEBRAIN", "POKERBRAIN"]
# -----------------------------
# Module-level session state
# -----------------------------
SESSION_STATE: Dict[str, Dict[str, Any]] = {}
# Logger
logger = logging.getLogger(__name__)
# Always set up basic logging
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter(
'%(asctime)s [CONTEXT] %(levelname)s: %(message)s',
datefmt='%H:%M:%S'
))
logger.addHandler(console_handler)
# -----------------------------
# Session initialization & cleanup
# -----------------------------
def _init_session(session_id: str) -> Dict[str, Any]:
"""
Initialize a new session state entry.
Returns:
Dictionary with default session state fields
"""
return {
"session_id": session_id,
"created_at": datetime.now(),
"last_timestamp": datetime.now(),
"last_user_message": None,
"last_assistant_message": None,
"mode": "default", # Future: "autonomous", "focused", "creative", etc.
"mood": "neutral", # Future: mood tracking
"active_project": None, # Future: project context
"message_count": 0,
"message_history": [],
"last_message_hash": None, # For duplicate detection
}
def _cleanup_expired_sessions():
"""Remove sessions that haven't been active for SESSION_TTL_HOURS"""
from datetime import timedelta
now = datetime.now()
expired_sessions = []
for session_id, state in SESSION_STATE.items():
last_active = state.get("last_timestamp", state.get("created_at"))
time_since_active = (now - last_active).total_seconds() / 3600 # hours
if time_since_active > SESSION_TTL_HOURS:
expired_sessions.append(session_id)
for session_id in expired_sessions:
del SESSION_STATE[session_id]
logger.info(f"🗑️ Expired session: {session_id} (inactive for {SESSION_TTL_HOURS}+ hours)")
return len(expired_sessions)
def _is_duplicate_message(session_id: str, user_prompt: str) -> bool:
"""
Check if this message is a duplicate of the last processed message.
Uses simple hash comparison to detect exact duplicates or processing loops.
"""
if not ENABLE_DUPLICATE_DETECTION:
return False
import hashlib
state = SESSION_STATE.get(session_id)
if not state:
return False
# Create hash of normalized message
message_hash = hashlib.md5(user_prompt.strip().lower().encode()).hexdigest()
# Check if it matches the last message
if state.get("last_message_hash") == message_hash:
logger.warning(
f"⚠️ DUPLICATE MESSAGE DETECTED | Session: {session_id} | "
f"Message: {user_prompt[:80]}..."
)
return True
# Update hash for next check
state["last_message_hash"] = message_hash
return False
def _trim_message_history(state: Dict[str, Any]):
"""
Trim message history to prevent unbounded growth.
Keeps only the most recent MAX_MESSAGE_HISTORY messages.
"""
history = state.get("message_history", [])
if len(history) > MAX_MESSAGE_HISTORY:
trimmed_count = len(history) - MAX_MESSAGE_HISTORY
state["message_history"] = history[-MAX_MESSAGE_HISTORY:]
logger.info(f"✂️ Trimmed {trimmed_count} old messages from session {state['session_id']}")
# -----------------------------
# Intake context retrieval
# -----------------------------
async def _get_intake_context(session_id: str, messages: List[Dict[str, str]]):
"""
Internal Intake — Direct call to summarize_context()
No HTTP, no containers, no failures.
"""
try:
return await summarize_context(session_id, messages)
except Exception as e:
logger.error(f"Internal Intake summarization failed: {e}")
return {
"session_id": session_id,
"L1": "",
"L5": "",
"L10": "",
"L20": "",
"L30": "",
"error": str(e)
}
# -----------------------------
# NeoMem semantic search
# -----------------------------
async def _search_neomem(
query: str,
user_id: str = "brian",
limit: int = 5
) -> List[Dict[str, Any]]:
"""
Search NeoMem for relevant long-term memories.
Returns full response structure from NeoMem:
[
{
"id": "mem_abc123",
"score": 0.92,
"payload": {
"data": "Memory text content...",
"metadata": {
"category": "...",
"created_at": "...",
...
}
}
},
...
]
Args:
query: Search query text
user_id: User identifier for memory filtering
limit: Maximum number of results
Returns:
List of memory objects with full structure, or empty list on failure
"""
if not NEOMEM_ENABLED:
logger.info("NeoMem search skipped (NEOMEM_ENABLED is false)")
return []
try:
# NeoMemClient reads NEOMEM_API from environment, no base_url parameter
client = NeoMemClient()
results = await client.search(
query=query,
user_id=user_id,
limit=limit,
threshold=RELEVANCE_THRESHOLD
)
# Results are already filtered by threshold in NeoMemClient.search()
logger.info(f"NeoMem search returned {len(results)} relevant results")
return results
except Exception as e:
logger.warning(f"NeoMem search failed: {e}")
return []
# -----------------------------
# Main context collection
# -----------------------------
async def collect_context(session_id: str, user_prompt: str) -> Dict[str, Any]:
"""
Collect unified context from all sources.
Orchestrates:
1. Initialize or update session state
2. Calculate time since last message
3. Retrieve Intake multilevel summaries (L1-L30)
4. Search NeoMem for relevant long-term memories
5. Update session state with current user message
6. Return unified context_state dictionary
Args:
session_id: Session identifier
user_prompt: Current user message
Returns:
Unified context state dictionary with structure:
{
"session_id": "...",
"timestamp": "2025-11-28T12:34:56",
"minutes_since_last_msg": 5.2,
"message_count": 42,
"intake": {
"L1": [...],
"L5": [...],
"L10": {...},
"L20": {...},
"L30": {...}
},
"rag": [
{
"id": "mem_123",
"score": 0.92,
"payload": {
"data": "...",
"metadata": {...}
}
},
...
],
"mode": "default",
"mood": "neutral",
"active_project": null,
"tools_available": ["RAG", "WEB", "WEATHER", "CODEBRAIN", "POKERBRAIN"]
}
"""
# A. Cleanup expired sessions periodically (every 100th call)
import random
if random.randint(1, 100) == 1:
_cleanup_expired_sessions()
# B. Initialize session state if needed
if session_id not in SESSION_STATE:
SESSION_STATE[session_id] = _init_session(session_id)
logger.info(f"Initialized new session: {session_id}")
state = SESSION_STATE[session_id]
# C. Check for duplicate messages (loop detection)
if _is_duplicate_message(session_id, user_prompt):
# Return cached context with warning flag
logger.warning(f"🔁 LOOP DETECTED - Returning cached context to prevent processing duplicate")
context_state = {
"session_id": session_id,
"timestamp": datetime.now().isoformat(),
"minutes_since_last_msg": 0,
"message_count": state["message_count"],
"intake": {},
"rag": [],
"mode": state["mode"],
"mood": state["mood"],
"active_project": state["active_project"],
"tools_available": TOOLS_AVAILABLE,
"duplicate_detected": True,
}
return context_state
# B. Calculate time delta
now = datetime.now()
time_delta_seconds = (now - state["last_timestamp"]).total_seconds()
minutes_since_last_msg = round(time_delta_seconds / 60.0, 2)
# C. Gather Intake context (multilevel summaries)
# Build compact message buffer for Intake:
messages_for_intake = []
# You track messages inside SESSION_STATE — assemble it here:
if "message_history" in state:
for turn in state["message_history"]:
messages_for_intake.append({
"user_msg": turn.get("user", ""),
"assistant_msg": turn.get("assistant", "")
})
intake_data = await _get_intake_context(session_id, messages_for_intake)
# D. Search NeoMem for relevant memories
if NEOMEM_ENABLED:
rag_results = await _search_neomem(
query=user_prompt,
user_id="brian", # TODO: Make configurable per session
limit=5
)
else:
rag_results = []
logger.info("Skipping NeoMem RAG retrieval; NEOMEM_ENABLED is false")
# E. Update session state
state["last_user_message"] = user_prompt
state["last_timestamp"] = now
state["message_count"] += 1
# Save user turn to history
state["message_history"].append({
"user": user_prompt,
"assistant": "" # assistant reply filled later by update_last_assistant_message()
})
# Trim history to prevent unbounded growth
_trim_message_history(state)
# F. Assemble unified context
context_state = {
"session_id": session_id,
"timestamp": now.isoformat(),
"minutes_since_last_msg": minutes_since_last_msg,
"message_count": state["message_count"],
"intake": intake_data,
"rag": rag_results,
"mode": state["mode"],
"mood": state["mood"],
"active_project": state["active_project"],
"tools_available": TOOLS_AVAILABLE,
}
# Log context summary in structured format
logger.info(
f"📊 Context | Session: {session_id} | "
f"Messages: {state['message_count']} | "
f"Last: {minutes_since_last_msg:.1f}min | "
f"RAG: {len(rag_results)} results"
)
# Show detailed context in detailed/verbose mode
if LOG_DETAIL_LEVEL in ["detailed", "verbose"]:
import json
logger.info(f"\n{''*100}")
logger.info(f"[CONTEXT] Session {session_id} | User: {user_prompt[:80]}...")
logger.info(f"{''*100}")
logger.info(f" Mode: {state['mode']} | Mood: {state['mood']} | Project: {state['active_project']}")
logger.info(f" Tools: {', '.join(TOOLS_AVAILABLE)}")
# Show intake summaries (condensed)
if intake_data:
logger.info(f"\n ╭─ INTAKE SUMMARIES ────────────────────────────────────────────────")
for level in ["L1", "L5", "L10", "L20", "L30"]:
if level in intake_data:
summary = intake_data[level]
if isinstance(summary, dict):
summary_text = summary.get("summary", str(summary)[:100])
else:
summary_text = str(summary)[:100]
logger.info(f"{level:4s}: {summary_text}...")
logger.info(f" ╰───────────────────────────────────────────────────────────────────")
# Show RAG results (condensed)
if rag_results:
logger.info(f"\n ╭─ RAG RESULTS ({len(rag_results)}) ──────────────────────────────────────────────")
for idx, result in enumerate(rag_results[:5], 1): # Show top 5
score = result.get("score", 0)
data_preview = str(result.get("payload", {}).get("data", ""))[:60]
logger.info(f" │ [{idx}] {score:.3f} | {data_preview}...")
if len(rag_results) > 5:
logger.info(f" │ ... and {len(rag_results) - 5} more results")
logger.info(f" ╰───────────────────────────────────────────────────────────────────")
# Show full raw data only in verbose mode
if LOG_DETAIL_LEVEL == "verbose":
logger.info(f"\n ╭─ RAW INTAKE DATA ─────────────────────────────────────────────────")
logger.info(f"{json.dumps(intake_data, indent=4, default=str)}")
logger.info(f" ╰───────────────────────────────────────────────────────────────────")
logger.info(f"{''*100}\n")
return context_state
# -----------------------------
# Session state management
# -----------------------------
def update_last_assistant_message(session_id: str, message: str) -> None:
"""
Update session state with assistant's response and complete
the last turn inside message_history.
"""
session = SESSION_STATE.get(session_id)
if not session:
logger.warning(f"Attempted to update non-existent session: {session_id}")
return
# Update last assistant message + timestamp
session["last_assistant_message"] = message
session["last_timestamp"] = datetime.now()
# Fill in assistant reply for the most recent turn
history = session.get("message_history", [])
if history:
# history entry already contains {"user": "...", "assistant": "...?"}
history[-1]["assistant"] = message
def get_session_state(session_id: str) -> Optional[Dict[str, Any]]:
"""
Retrieve current session state.
Args:
session_id: Session identifier
Returns:
Session state dict or None if session doesn't exist
"""
return SESSION_STATE.get(session_id)
def close_session(session_id: str) -> bool:
"""
Close and cleanup a session.
Args:
session_id: Session identifier
Returns:
True if session was closed, False if it didn't exist
"""
if session_id in SESSION_STATE:
del SESSION_STATE[session_id]
logger.info(f"Closed session: {session_id}")
return True
return False
# -----------------------------
# Extension hooks for future autonomy
# -----------------------------
def update_mode(session_id: str, new_mode: str) -> None:
"""
Update session mode.
Future modes: "autonomous", "focused", "creative", "collaborative", etc.
Args:
session_id: Session identifier
new_mode: New mode string
"""
if session_id in SESSION_STATE:
old_mode = SESSION_STATE[session_id]["mode"]
SESSION_STATE[session_id]["mode"] = new_mode
logger.info(f"Session {session_id} mode changed: {old_mode} -> {new_mode}")
def update_mood(session_id: str, new_mood: str) -> None:
"""
Update session mood.
Future implementation: Sentiment analysis, emotional state tracking.
Args:
session_id: Session identifier
new_mood: New mood string
"""
if session_id in SESSION_STATE:
old_mood = SESSION_STATE[session_id]["mood"]
SESSION_STATE[session_id]["mood"] = new_mood
logger.info(f"Session {session_id} mood changed: {old_mood} -> {new_mood}")
def update_active_project(session_id: str, project: Optional[str]) -> None:
"""
Update active project context.
Future implementation: Project-specific memory, tools, preferences.
Args:
session_id: Session identifier
project: Project identifier or None
"""
if session_id in SESSION_STATE:
SESSION_STATE[session_id]["active_project"] = project
logger.info(f"Session {session_id} active project set to: {project}")
async def autonomous_heartbeat(session_id: str) -> Optional[str]:
"""
Autonomous thinking heartbeat.
Future implementation:
- Check if Lyra should initiate internal dialogue
- Generate self-prompted thoughts based on session state
- Update mood/mode based on context changes
- Trigger proactive suggestions or reminders
Args:
session_id: Session identifier
Returns:
Optional autonomous thought/action string
"""
# Stub for future implementation
# Example logic:
# - If minutes_since_last_msg > 60: Check for pending reminders
# - If mood == "curious" and active_project: Generate research questions
# - If mode == "autonomous": Self-prompt based on project goals
logger.debug(f"Autonomous heartbeat for session {session_id} (not yet implemented)")
return None