Files
project-lyra/README.md
2025-11-28 18:05:59 -05:00

449 lines
14 KiB
Markdown

# Project Lyra - README v0.5.0
Lyra is a modular persistent AI companion system with advanced reasoning capabilities.
It provides memory-backed chat using **NeoMem** + **Relay** + **Cortex**,
with multi-stage reasoning pipeline powered by distributed LLM backends.
## Mission Statement
The point of Project Lyra is to give an AI chatbot more abilities than a typical chatbot. Typical chatbots are essentially amnesic and forget everything about your project. Lyra helps keep projects organized and remembers everything you have done. Think of her abilities as a notepad/schedule/database/co-creator/collaborator all with its own executive function. Say something in passing, Lyra remembers it then reminds you of it later.
---
## Architecture Overview
Project Lyra operates as a series of Docker containers networked together in a microservices architecture. Like how the brain has regions, Lyra has modules:
### A. VM 100 - lyra-core (Core Services)
**1. Relay** (Node.js/Express) - Port 7078
- Main orchestrator and message router
- Coordinates all module interactions
- OpenAI-compatible endpoint: `POST /v1/chat/completions`
- Internal endpoint: `POST /chat`
- Routes messages through Cortex reasoning pipeline
- Manages async calls to Intake and NeoMem
**2. UI** (Static HTML)
- Browser-based chat interface with cyberpunk theme
- Connects to Relay at `http://10.0.0.40:7078`
- Saves and loads sessions
- OpenAI-compatible message format
**3. NeoMem** (Python/FastAPI) - Port 7077
- Long-term memory database (fork of Mem0 OSS)
- Vector storage (PostgreSQL + pgvector) + Graph storage (Neo4j)
- RESTful API: `/memories`, `/search`
- Semantic memory updates and retrieval
- No external SDK dependencies - fully local
### B. VM 101 - lyra-cortex (Reasoning Layer)
**4. Cortex** (Python/FastAPI) - Port 7081
- Primary reasoning engine with multi-stage pipeline
- **4-Stage Processing:**
1. **Reflection** - Generates meta-awareness notes about conversation
2. **Reasoning** - Creates initial draft answer using context
3. **Refinement** - Polishes and improves the draft
4. **Persona** - Applies Lyra's personality and speaking style
- Integrates with Intake for short-term context
- Flexible LLM router supporting multiple backends
**5. Intake v0.2** (Python/FastAPI) - Port 7080
- Simplified short-term memory summarization
- Session-based circular buffer (deque, maxlen=200)
- Single-level simple summarization (no cascading)
- Background async processing with FastAPI BackgroundTasks
- Pushes summaries to NeoMem automatically
- **API Endpoints:**
- `POST /add_exchange` - Add conversation exchange
- `GET /summaries?session_id={id}` - Retrieve session summary
- `POST /close_session/{id}` - Close and cleanup session
### C. LLM Backends (Remote/Local APIs)
**Multi-Backend Strategy:**
- **PRIMARY**: vLLM on AMD MI50 GPU (`http://10.0.0.43:8000`) - Cortex reasoning, Intake
- **SECONDARY**: Ollama on RTX 3090 (`http://10.0.0.3:11434`) - Configurable per-module
- **CLOUD**: OpenAI API (`https://api.openai.com/v1`) - Cortex persona layer
- **FALLBACK**: Local backup (`http://10.0.0.41:11435`) - Emergency fallback
---
## Data Flow Architecture (v0.5.0)
### Normal Message Flow:
```
User (UI) → POST /v1/chat/completions
Relay (7078)
↓ POST /reason
Cortex (7081)
↓ GET /summaries?session_id=xxx
Intake (7080) [RETURNS SUMMARY]
Cortex processes (4 stages):
1. reflection.py → meta-awareness notes
2. reasoning.py → draft answer (uses LLM)
3. refine.py → refined answer (uses LLM)
4. persona/speak.py → Lyra personality (uses LLM)
Returns persona answer to Relay
Relay → Cortex /ingest (async, stub)
Relay → Intake /add_exchange (async)
Intake → Background summarize → NeoMem
Relay → UI (returns final response)
```
### Cortex 4-Stage Reasoning Pipeline:
1. **Reflection** (`reflection.py`) - Cloud backend (OpenAI)
- Analyzes user intent and conversation context
- Generates meta-awareness notes
- "What is the user really asking?"
2. **Reasoning** (`reasoning.py`) - Primary backend (vLLM)
- Retrieves short-term context from Intake
- Creates initial draft answer
- Integrates context, reflection notes, and user prompt
3. **Refinement** (`refine.py`) - Primary backend (vLLM)
- Polishes the draft answer
- Improves clarity and coherence
- Ensures factual consistency
4. **Persona** (`speak.py`) - Cloud backend (OpenAI)
- Applies Lyra's personality and speaking style
- Natural, conversational output
- Final answer returned to user
---
## Features
### Lyra-Core (VM 100)
**Relay**:
- Main orchestrator and message router
- OpenAI-compatible endpoint: `POST /v1/chat/completions`
- Internal endpoint: `POST /chat`
- Health check: `GET /_health`
- Async non-blocking calls to Cortex and Intake
- Shared request handler for code reuse
- Comprehensive error handling
**NeoMem (Memory Engine)**:
- Forked from Mem0 OSS - fully independent
- Drop-in compatible API (`/memories`, `/search`)
- Local-first: runs on FastAPI with Postgres + Neo4j
- No external SDK dependencies
- Semantic memory updates - compares embeddings and performs in-place updates
- Default service: `neomem-api` (port 7077)
**UI**:
- Lightweight static HTML chat interface
- Cyberpunk theme
- Session save/load functionality
- OpenAI message format support
### Cortex (VM 101)
**Cortex** (v0.5):
- Multi-stage reasoning pipeline (reflection → reasoning → refine → persona)
- Flexible LLM backend routing
- Per-stage backend selection
- Async processing throughout
- IntakeClient integration for short-term context
- `/reason`, `/ingest` (stub), `/health` endpoints
**Intake** (v0.2):
- Simplified single-level summarization
- Session-based circular buffer (200 exchanges max)
- Background async summarization
- Automatic NeoMem push
- No persistent log files (memory-only)
- **Breaking change from v0.1**: Removed cascading summaries (L1, L2, L5, L10, L20, L30)
**LLM Router**:
- Dynamic backend selection
- Environment-driven configuration
- Support for vLLM, Ollama, OpenAI, custom endpoints
- Per-module backend preferences
# Beta Lyrae (RAG Memory DB) - added 11-3-25
- **RAG Knowledge DB - Beta Lyrae (sheliak)**
- This module implements the **Retrieval-Augmented Generation (RAG)** layer for Project Lyra.
- It serves as the long-term searchable memory store that Cortex and Relay can query for relevant context before reasoning or response generation.
The system uses:
- **ChromaDB** for persistent vector storage
- **OpenAI Embeddings (`text-embedding-3-small`)** for semantic similarity
- **FastAPI** (port 7090) for the `/rag/search` REST endpoint
- Directory Layout
rag/
├── rag_chat_import.py # imports JSON chat logs
├── rag_docs_import.py # (planned) PDF/EPUB/manual importer
├── rag_build.py # legacy single-folder builder
├── rag_query.py # command-line query helper
├── rag_api.py # FastAPI service providing /rag/search
├── chromadb/ # persistent vector store
├── chatlogs/ # organized source data
│ ├── poker/
│ ├── work/
│ ├── lyra/
│ ├── personal/
│ └── ...
└── import.log # progress log for batch runs
- **OpenAI chatlog importer.
- Takes JSON formatted chat logs and imports it to the RAG.
- **fetures include:**
- Recursive folder indexing with **category detection** from directory name
- Smart chunking for long messages (5 000 chars per slice)
- Automatic deduplication using SHA-1 hash of file + chunk
- Timestamps for both file modification and import time
- Full progress logging via tqdm
- Safe to run in background with nohup … &
- Metadata per chunk:
```json
{
"chat_id": "<sha1 of filename>",
"chunk_index": 0,
"source": "chatlogs/lyra/0002_cortex_LLMs_11-1-25.json",
"title": "cortex LLMs 11-1-25",
"role": "assistant",
"category": "lyra",
"type": "chat",
"file_modified": "2025-11-06T23:41:02",
"imported_at": "2025-11-07T03:55:00Z"
}```
# Cortex VM (VM101, CT201)
- **CT201 main reasoning orchestrator.**
- This is the internal brain of Lyra.
- Running in a privellaged LXC.
- Currently a locally served LLM running on a Radeon Instinct HI50, using a customized version of vLLM that lets it use ROCm.
- Accessible via 10.0.0.43:8000/v1/completions.
- **Intake v0.1.1 **
- Recieves messages from relay and summarizes them in a cascading format.
- Continues to summarize smaller amounts of exhanges while also generating large scale conversational summaries. (L20)
- Intake then sends to cortex for self reflection, neomem for memory consolidation.
- **Reflect **
-TBD
# Self hosted vLLM server #
- **CT201 main reasoning orchestrator.**
- This is the internal brain of Lyra.
- Running in a privellaged LXC.
- Currently a locally served LLM running on a Radeon Instinct HI50, using a customized version of vLLM that lets it use ROCm.
- Accessible via 10.0.0.43:8000/v1/completions.
- **Stack Flow**
- [Proxmox Host]
└── loads AMDGPU driver
└── boots CT201 (order=2)
[CT201 GPU Container]
├── lyra-start-vllm.sh → starts vLLM ROCm model server
├── lyra-vllm.service → runs the above automatically
├── lyra-core.service → launches Cortex + Intake Docker stack
└── Docker Compose → runs Cortex + Intake containers
[Cortex Container]
├── Listens on port 7081
├── Talks to NVGRAM (mem API) + Intake
└── Main relay between Lyra UI ↔ memory ↔ model
[Intake Container]
├── Listens on port 7080
├── Summarizes every few exchanges
├── Writes summaries to /app/logs/summaries.log
└── Future: sends summaries → Cortex for reflection
---
## Version History
### v0.5.0 (2025-11-28) - Current Release
- ✅ Fixed all critical API wiring issues
- ✅ Added OpenAI-compatible endpoint to Relay (`/v1/chat/completions`)
- ✅ Fixed Cortex → Intake integration
- ✅ Added missing Python package `__init__.py` files
- ✅ End-to-end message flow verified and working
### v0.4.x (Major Rewire)
- Cortex multi-stage reasoning pipeline
- Intake v0.2 simplification
- LLM router with multi-backend support
- Major architectural restructuring
### v0.3.x
- Beta Lyrae RAG system
- NeoMem integration
- Basic Cortex reasoning loop
---
## Known Issues (v0.5.0)
### Non-Critical
- Session management endpoints not fully implemented in Relay
- RAG service currently disabled in docker-compose.yml
- Cortex `/ingest` endpoint is a stub
### Future Enhancements
- Re-enable RAG service integration
- Implement full session persistence
- Add request correlation IDs for tracing
- Comprehensive health checks
---
## Quick Start
### Prerequisites
- Docker + Docker Compose
- PostgreSQL 13+, Neo4j 4.4+ (for NeoMem)
- At least one LLM API endpoint (vLLM, Ollama, or OpenAI)
### Setup
1. Configure environment variables in `.env` files
2. Start services: `docker-compose up -d`
3. Check health: `curl http://localhost:7078/_health`
4. Access UI: `http://localhost:7078`
### Test
```bash
curl -X POST http://localhost:7078/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"messages": [{"role": "user", "content": "Hello Lyra!"}],
"session_id": "test"
}'
```
---
## Documentation
- See [CHANGELOG.md](CHANGELOG.md) for detailed version history
- See `ENVIRONMENT_VARIABLES.md` for environment variable reference
- Additional information available in the Trilium docs
---
## License
NeoMem is a derivative work based on Mem0 OSS (Apache 2.0).
© 2025 Terra-Mechanics / ServersDown Labs. All modifications released under Apache 2.0.
**Built with Claude Code**
---
## 📦 Requirements
- Docker + Docker Compose
- Postgres + Neo4j (for NeoMem)
- Access to an open AI or ollama style API.
- OpenAI API key (for Relay fallback LLMs)
**Dependencies:**
- fastapi==0.115.8
- uvicorn==0.34.0
- pydantic==2.10.4
- python-dotenv==1.0.1
- psycopg>=3.2.8
- ollama
---
🔌 Integration Notes
Lyra-Core connects to neomem-api:8000 inside Docker or localhost:7077 locally.
API endpoints remain identical to Mem0 (/memories, /search).
History and entity graphs managed internally via Postgres + Neo4j.
---
🧱 Architecture Snapshot
User → Relay → Cortex
[RAG Search]
[Reflection Loop]
Intake (async summaries)
NeoMem (persistent memory)
**Cortex v0.4.1 introduces the first fully integrated reasoning loop.**
- Data Flow:
- User message enters Cortex via /reason.
- Cortex assembles context:
- Intake summaries (short-term memory)
- RAG contextual data (knowledge base)
- LLM generates initial draft (call_llm).
- Reflection loop critiques and refines the answer.
- Intake asynchronously summarizes and sends snapshots to NeoMem.
RAG API Configuration:
Set RAG_API_URL in .env (default: http://localhost:7090).
---
## Setup and Operation ##
## Beta Lyrae - RAG memory system ##
**Requirements**
-Env= python 3.10+
-Dependences: pip install chromadb openai tqdm python-dotenv fastapi uvicorn jq
-Persistent storage path: ./chromadb (can be moved to /mnt/data/lyra_rag_db)
**Import Chats**
- Chats need to be formatted into the correct format of
```
"messages": [
{
"role:" "user",
"content": "Message here"
},
"messages": [
{
"role:" "assistant",
"content": "Message here"
},```
- Organize the chats into categorical folders. This step is optional, but it helped me keep it straight.
- run "python3 rag_chat_import.py", chats will then be imported automatically. For reference, it took 32 Minutes to import 68 Chat logs (aprox 10.3MB).
**Build API Server**
- Run: rag_build.py, this automatically builds the chromaDB using data saved in the /chatlogs/ folder. (docs folder to be added in future.)
- Run: rag_api.py or ```uvicorn rag_api:app --host 0.0.0.0 --port 7090```
**Query**
- Run: python3 rag_query.py "Question here?"
- For testing a curl command can reach it too
```
curl -X POST http://127.0.0.1:7090/rag/search \
-H "Content-Type: application/json" \
-d '{
"query": "What is the current state of Cortex and Project Lyra?",
"where": {"category": "lyra"}
}'
```
# Beta Lyrae - RAG System
## 📖 License
NeoMem is a derivative work based on the Mem0 OSS project (Apache 2.0).
This fork retains the original Apache 2.0 license and adds local modifications.
© 2025 Terra-Mechanics / ServersDown Labs. All modifications released under Apache 2.0.